CF1101D GCD Counting 点分治+质因数分解

题意:求最长的树上路径点值的 $gcd$ 不为 $1$ 的长度.
由于只要求 $gcd$ 不为一,所以只要 $gcd$ 是一个大于等于 $2$ 的质数的倍数就可以了.
而我们发现 $2\times 10^5$ 以内的数最多只会有 $7$~$8$ 个本质不同的质因子,所以我们在点分治的时候暴力拆质因子并维护一些桶即可.

#include <cstdio>
#include <vector>
#include <algorithm>
#define N 200004
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
int n,tot,edges,sn,root,tl,answer;
vector<int>v[N];
int prime[N],is[N],num[N];
int val[N],hd[N],to[N<<1],nex[N<<1];
int size[N],mx[N],vis[N],f[N],g[N],tmp[N],depth[N],cur[N],number[N];
void add(int u,int v)
{
nex[++edges]=hd[u],hd[u]=edges,to[edges]=v;
}
void getroot(int u,int ff)
{
size[u]=1,mx[u]=0;
for(int i=hd[u];i;i=nex[i])
if(to[i]!=ff&&!vis[to[i]])
getroot(to[i],u),size[u]+=size[to[i]],mx[u]=max(mx[u],size[to[i]]);
mx[u]=max(mx[u],sn-size[u]);
if(mx[u]<mx[root]) root=u;
}
void dfs(int u,int ff,int dep)
{
number[u]=tmp[++tl]=__gcd(val[u],number[ff]),depth[tl]=dep;
for(int i=hd[u];i;i=nex[i])
if(to[i]!=ff&&!vis[to[i]])
dfs(to[i],u,dep+1);
}
void calc(int u)
{
int i,j,re;
if(val[u]>1) answer=max(answer,1);
tl=0;
number[u]=val[u];
for(i=hd[u];i;i=nex[i])
{
if(vis[to[i]]) continue;
re=tl+1,dfs(to[i],u,1);
for(j=re;j<=tl;++j)
{
int a=tmp[j],b=depth[j];
if(a>1)
{
for(int k=0;k<v[a].size();++k)
g[v[a][k]]=max(g[v[a][k]],b),answer=max(answer,g[v[a][k]]+f[v[a][k]]+1);
}
}
for(j=re;j<=tl;++j)
{
int a=tmp[j];
if(a>1)
{
for(int k=0;k<v[a].size();++k) f[v[a][k]]=max(f[v[a][k]],g[v[a][k]]);
}
}
for(j=re;j<=tl;++j)
{
int a=tmp[j];
if(a>1) for(int k=0;k<v[a].size();++k) g[v[a][k]]=0;
}
}
for(i=1;i<=tl;++i)
{
int a=tmp[i];
if(a>1) for(j=0;j<v[a].size();++j) f[v[a][j]]=g[v[a][j]]=0;
}
}
void solve(int u)
{
vis[u]=1,calc(u);
for(int i=hd[u];i;i=nex[i])
if(!vis[to[i]])
sn=size[to[i]],root=0,getroot(to[i],u),solve(root);
}
void init()
{
int i,j;
for(i=2;i<N;++i)
{
if(!is[i]) prime[++tot]=i;
for(j=1;j<=tot&&i*prime[j]<N;++j)
{
is[i*prime[j]]=1;
if(i%prime[j]==0) break;
}
}
for(i=2;i<N;++i) num[i]=i;
for(i=1;i<=tot;++i)
for(j=prime[i];j<N;j+=prime[i])
{
v[j].push_back(prime[i]);
while(num[j]%prime[i]==0) num[j]/=prime[i];
}
}
int main()
{
int i,j;
init();
// setIO("input");
scanf("%d",&n);
for(i=1;i<=n;++i) scanf("%d",&val[i]);
for(i=1;i<n;++i)
{
int a,b;
scanf("%d%d",&a,&b),add(a,b),add(b,a);
}
mx[root=0]=sn=n,getroot(1,0),solve(root);
printf("%d\n",answer);
return 0;
}

  

上一篇:MySQL ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: NO) 的解决办法和原因


下一篇:spring整合quartz并持久化