比较器
1)比较器的实质就是重载比较运算符
2)比较器可以很好的应用在特殊标准的排序上
3)比较器可以很好的应用在根据特殊标准排序的结构上
4)写代码变得异常容易,还用于范型编程
public static class Student {
public String name;
public int id;
public int age;
public Student(String name, int id, int age) {
this.name = name;
this.id = id;
this.age = age;
}
}
// 任何比较器:
// compare方法里,遵循一个统一的规范:
// 返回负数的时候,认为第一个参数应该排在前面
// 返回正数的时候,认为第二个参数应该排在前面
// 返回0的时候,认为无所谓谁放前面
public static class IdShengAgeJiangOrder implements Comparator<Student> {
// 根据id从小到大,但是如果id一样,按照年龄从大到小
@Override
public int compare(Student o1, Student o2) {
return o1.id != o2.id ? (o1.id - o2.id) : (o2.age - o1.age);
}
}
堆结构
1)堆结构就是用数组实现的完全二叉树结构
2)完全二叉树中如果每棵子树的最大值都在顶部就是大根堆
3)完全二叉树中如果每棵子树的最小值都在顶部就是小根堆
4)堆结构的heapInsert与heapify操作
5)堆结构的增大和减少
6)优先级队列结构,就是堆结构
堆结构调整:加入数据,依次往上移动,调整堆结构
// 新加进来的数,现在停在了index位置,请依次往上移动,
// 移动到0位置,或者干不掉自己的父亲了,停!
private void heapInsert(int[] arr, int index) {
// [index] [index-1]/2
// index == 0
while (arr[index] > arr[(index - 1) / 2]) {
swap(arr, index, (index - 1) / 2);
index = (index - 1) / 2;
}
}
堆结构调整:移除最顶数据后,依次往下移动,调整堆结构
// 从index位置,往下看,不断的下沉
// 停:较大的孩子都不再比index位置的数大;已经没孩子了
private void heapify(int[] arr, int index, int heapSize) {
int left = index * 2 + 1;
while (left < heapSize) { // 如果有左孩子,有没有右孩子,可能有可能没有!
// 把较大孩子的下标,给largest
int largest = left + 1 < heapSize && arr[left + 1] > arr[left] ? left + 1 : left;
largest = arr[largest] > arr[index] ? largest : index;
if (largest == index) {
break;
}
// index和较大孩子,要互换
swap(arr, largest, index);
index = largest;
left = index * 2 + 1;
}
}
堆排序
1,先让整个数组都变成大根堆结构,建立堆的过程:
1)从上到下的方法,时间复杂度为O(N*logN)
2)从下到上的方法,时间复杂度为O(N)
2,把堆的最大值和堆末尾的值交换,然后减少堆的大小之后,再去调整堆,一直周而复始,时间复杂度为O(N*logN)
3,堆的大小减小成0之后,排序完成
1.从上到下方法:
// 堆排序额外空间复杂度O(1)
public static void heapSort(int[] arr) {
if (arr == null || arr.length < 2) {
return;
}
// O(N*logN)
for (int i = 0; i < arr.length; i++) { // O(N)
heapInsert(arr, i); // O(logN)
}
int heapSize = arr.length;
swap(arr, 0, --heapSize);
// O(N*logN)
while (heapSize > 0) { // O(N)
heapify(arr, 0, heapSize); // O(logN)
swap(arr, 0, --heapSize); // O(1)
}
}
// arr[index]刚来的数,往上
public static void heapInsert(int[] arr, int index) {
while (arr[index] > arr[(index - 1) / 2]) {
swap(arr, index, (index - 1) / 2);
index = (index - 1) / 2;
}
}
2.从下到上方法:
// 堆排序额外空间复杂度O(1)
public static void heapSort(int[] arr) {
if (arr == null || arr.length < 2) {
return;
}
// O(N)
for (int i = arr.length - 1; i >= 0; i--) {
heapify(arr, i, arr.length);
}
int heapSize = arr.length;
swap(arr, 0, --heapSize);
// O(N*logN)
while (heapSize > 0) { // O(N)
heapify(arr, 0, heapSize); // O(logN)
swap(arr, 0, --heapSize); // O(1)
}
}
// arr[index]位置的数,能否往下移动
public static void heapify(int[] arr, int index, int heapSize) {
int left = index * 2 + 1; // 左孩子的下标
while (left < heapSize) { // 下方还有孩子的时候
// 两个孩子中,谁的值大,把下标给largest
// 1)只有左孩子,left -> largest
// 2) 同时有左孩子和右孩子,右孩子的值<= 左孩子的值,left -> largest
// 3) 同时有左孩子和右孩子并且右孩子的值> 左孩子的值, right -> largest
int largest = left + 1 < heapSize && arr[left + 1] > arr[left] ? left + 1 : left;
// 父和较大的孩子之间,谁的值大,把下标给largest
largest = arr[largest] > arr[index] ? largest : index;
if (largest == index) {
break;
}
swap(arr, largest, index);
index = largest;
left = index * 2 + 1;
}
}
与堆相关题目1
已知一个几乎有序的数组。几乎有序是指,如果把数组排好顺序的话,每个元素移动的距离一定不超过k,并且k相对于数组长度来说是比较小的。
请选择一个合适的排序策略,对这个数组进行排序。
使用一个大小为 k的最小堆
public static void sortedArrDistanceLessK(int[] arr, int k) {
if (k == 0) {
return;
}
// 默认小根堆
PriorityQueue<Integer> heap = new PriorityQueue<>();
int index = 0;
// 0...K-1
for (; index <= Math.min(arr.length - 1, k - 1); index++) {
heap.add(arr[index]);
}
int i = 0;
for (; index < arr.length; i++, index++) {
heap.add(arr[index]);
arr[i] = heap.poll();
}
while (!heap.isEmpty()) {
arr[i++] = heap.poll();
}
}
堆题目2---最大线段重合问题
给定很多线段,每个线段都有两个数[start, end],
表示线段开始位置和结束位置,左右都是闭区间
规定:
1)线段的开始和结束位置一定都是整数值
2)线段重合区域的长度必须>=1
返回线段最多重合区域中,包含了几条线段
public static int maxCover2(int[][] m) {
Line[] lines = new Line[m.length];
for (int i = 0; i < m.length; i++) {
lines[i] = new Line(m[i][0], m[i][1]);
}
Arrays.sort(lines, new StartComparator());
// 小根堆,每一条线段的结尾数值,使用默认的
PriorityQueue<Integer> heap = new PriorityQueue<>();
int max = 0;
for (int i = 0; i < lines.length; i++) {
// lines[i] -> cur 在黑盒中,把<=cur.start 东西都弹出
while (!heap.isEmpty() && heap.peek() <= lines[i].start) {
heap.poll();
}
heap.add(lines[i].end);
max = Math.max(max, heap.size());
}
return max;
}
加强堆
系统提供的堆无法做到的事情:
1)已经入堆的元素,如果参与排序的指标方法变化,
系统提供的堆无法做到时间复杂度O(logN)调整!都是O(N)的调整!
2)系统提供的堆只能弹出堆顶,做不到*删除任何一个堆中的元素,
或者说,无法在时间复杂度O(logN)内完成!一定会高于O(logN)
根本原因:无反向索引表
改写堆
1)建立反向索引表
2)建立比较器
3)核心在于各种结构相互配合,非常容易出错
/*
* T一定要是非基础类型,有基础类型需求包一层
*/
public class HeapGreater<T> {
private ArrayList<T> heap;
private HashMap<T, Integer> indexMap;
private int heapSize;
private Comparator<? super T> comp;
public HeapGreater(Comparator<T> c) {
heap = new ArrayList<>();
indexMap = new HashMap<>();
heapSize = 0;
comp = c;
}
public boolean isEmpty() {
return heapSize == 0;
}
public int size() {
return heapSize;
}
public boolean contains(T obj) {
return indexMap.containsKey(obj);
}
public T peek() {
return heap.get(0);
}
public void push(T obj) {
heap.add(obj);
indexMap.put(obj, heapSize);
heapInsert(heapSize++);
}
public T pop() {
T ans = heap.get(0);
swap(0, heapSize - 1);
indexMap.remove(ans);
heap.remove(--heapSize);
heapify(0);
return ans;
}
public void remove(T obj) {
T replace = heap.get(heapSize - 1);
int index = indexMap.get(obj);
indexMap.remove(obj);
heap.remove(--heapSize);
if (obj != replace) {
heap.set(index, replace);
indexMap.put(replace, index);
resign(replace);
}
}
public void resign(T obj) {
heapInsert(indexMap.get(obj));
heapify(indexMap.get(obj));
}
// 请返回堆上的所有元素
public List<T> getAllElements() {
List<T> ans = new ArrayList<>();
for (T c : heap) {
ans.add(c);
}
return ans;
}
private void heapInsert(int index) {
while (comp.compare(heap.get(index), heap.get((index - 1) / 2)) < 0) {
swap(index, (index - 1) / 2);
index = (index - 1) / 2;
}
}
private void heapify(int index) {
int left = index * 2 + 1;
while (left < heapSize) {
int best = left + 1 < heapSize && comp.compare(heap.get(left + 1), heap.get(left)) < 0 ? (left + 1) : left;
best = comp.compare(heap.get(best), heap.get(index)) < 0 ? best : index;
if (best == index) {
break;
}
swap(best, index);
index = best;
left = index * 2 + 1;
}
}
private void swap(int i, int j) {
T o1 = heap.get(i);
T o2 = heap.get(j);
heap.set(i, o2);
heap.set(j, o1);
indexMap.put(o2, i);
indexMap.put(o1, j);
}
}