题目大意
一个 01 背包问题,物品数 n ≤ 1 0 5 n\le 10^5 n≤105 ,容量 W ≤ 1 0 12 W\le 10^{12} W≤1012 。将体积上限放宽到 3 2 W \frac{3}{2}W 23W ,求一组解使得物品总价值不低于容量为 W W W 时的最优解。
思路
01 背包问题通常是 DP 求解,但该数据范围显然不可行。
先考虑将物品按(价值/体积)进行排序,然后贪心取,取到放不下为止。这样取到的不一定是满足要求。但显然,贪心方案一定是当前总体积的最优解。(最优解的总体积可能比它大,总(价值/体积)一定不会比它高。)
因此,如果所有物品体积都不超过 W 2 \frac{W}{2} 2W ,那么贪心方案一定满足要求。
否则,可以发现,方案中体积超过 W 2 \frac{W}{2} 2W 的物品一定不超过 1 个。
不妨考虑枚举大物品。如果大物品和 W W W 容量最优解的相同,那么再对小物品贪心,得到的方案也一定满足要求。
所以考虑用 two-pointers 求解
代码
#include <bits/stdc++.h>
#define rep(i, l, r) for (int i = l; i <= r; ++i)
using namespace std;
typedef long long ll;
const int N = 100005;
int T;
int n;
ll W;
class pack {
public:
int id;
ll w, cost;
pack() {}
pack(int _id, ll _w, ll _cost) : id(_id), w(_w), cost(_cost) {}
void read() { scanf("%lld%lld", &w, &cost); }
bool operator<(const pack &rhs) const {
return cost * rhs.w > w * rhs.cost;
}
} small[N], big[N];
int n_small, n_big;
int main() {
scanf("%d", &T);
while (T--) {
scanf("%d%lld", &n, &W);
n_small = n_big = 0;
rep(i, 1, n) {
ll w, cost;
scanf("%lld%lld", &w, &cost);
if (w * 2 > W)
big[++n_big] = pack(i, w, cost);
else
small[++n_small] = pack(i, w, cost);
}
sort(big + 1, big + n_big + 1,
[](pack lhs, pack rhs) { return lhs.w > rhs.w; });
big[n_big + 1] = pack(n + 1, 0, 0);
sort(small + 1, small + n_small + 1);
// printf("%d %d\n", n_big, n_small);
int top = 0;
ll small_w = 0, small_cost = 0;
ll ans = 0;
int ret_big = n_big + 1, ret_top = 0;
rep(i, 1, n_big + 1) {
if (big[i].w > W * 3 / 2) continue;
while (top < n_small &&
big[i].w + small_w + small[top + 1].w <= W * 3 / 2) {
++top;
small_w += small[top].w;
small_cost += small[top].cost;
}
// printf("%d ", top);
if (big[i].cost + small_cost > ans) {
ans = big[i].cost + small_cost;
ret_big = i;
ret_top = top;
}
}
printf("%d\n", ret_top + (ret_big <= n_big));
rep(i, 1, ret_top) printf("%d ", small[i].id);
if (ret_big <= n_big) printf("%d ", big[ret_big].id);
printf("\n");
}
return 0;
}