Farey Sequence
Time Limit: 1000MS | Memory Limit: 65536K | |
Description
The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbers a/b with 0 < a < b <= n and gcd(a,b) = 1 arranged in increasing order. The first few are
F2 = {1/2}
F3 = {1/3, 1/2, 2/3}
F4 = {1/4, 1/3, 1/2, 2/3, 3/4}
F5 = {1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5}
F2 = {1/2}
F3 = {1/3, 1/2, 2/3}
F4 = {1/4, 1/3, 1/2, 2/3, 3/4}
F5 = {1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5}
You task is to calculate the number of terms in the Farey sequence Fn.
Input
There are several test cases. Each test case has only one line, which contains a positive integer n (2 <= n <= 106). There are no blank lines between cases. A line with a single 0 terminates the input.
Output
For each test case, you should output one line, which contains N(n) ---- the number of terms in the Farey sequence Fn.
Sample Input
2
3
4
5
0
Sample Output
1
3
5
9
Source
POJ Contest,Author:Mathematica@ZSU
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
#define ll long long
#define esp 1e-13
const int N=1e3+,M=1e6+,inf=1e9+,mod=;
ll p[M],ji;
bool vis[M];
ll phi[M];
ll sum[M];
void get_eular(int n)
{
ji = ;
memset(vis, true, sizeof(vis));
for(int i = ; i <= n; i++)
{
if(vis[i])
{
p[ji ++] = i;
phi[i] = i - ;
}
for(int j = ; j < ji && i * p[j] <= n; j++)
{
vis[i * p[j]] = false;
if(i % p[j] == )
{
phi[i * p[j]] = phi[i] * p[j];
break;
}
else
phi[i * p[j]] = phi[i] * phi[p[j]];
}
}
}
int main()
{
int x,i;
get_eular(M);
memset(sum,,sizeof(sum));
for(i=;i<=1e6;i++)
sum[i]=sum[i-]+phi[i];
while(~scanf("%d",&x))
{
if(!x)break;
printf("%lld\n",sum[x]);
}
return ;
}