poj 2478 Farey Sequence(欧拉函数是基于寻求筛法素数)

http://poj.org/problem?id=2478

求欧拉函数的模板。

初涉欧拉函数,先学一学它主要的性质。

1.欧拉函数是求小于n且和n互质(包含1)的正整数的个数。

记为φ(n)。

2.欧拉定理:若a与n互质。那么有a^φ(n) ≡ 1(mod n),经经常使用于求幂的模。

3.若p是一个质数,那么φ(p) = p-1。注意φ(1) = 1。

4.欧拉函数是积性函数:

若m与n互质,那么φ(nm) = φ(n) * φ(m)。

若n = p^k且p为质数,那么φ(n) = p^k - p^(k-1) = p^(k-1) * (p-1)。

5.当n为奇数时,有φ(2*n) = φ(n)。

6.基于素数筛的求欧拉函数的重要根据:

设a是n的质因数,若(N%a == 0 && (N/a)%a == 0) 则 φ(N) = φ(N/a)*a; 若(N%a == 0 && (N/a)%a != 0) 则φ(N) = φ(N/a)*(a-1)。



该题就是基于性质六,在线性时间内求欧拉函数。

#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <set>
#include <map>
#include <vector>
#include <math.h>
#include <string.h>
#include <queue>
#include <string>
#include <stdlib.h>
#define LL long long
#define _LL __int64
#define eps 1e-8
#define PI acos(-1.0) using namespace std;
const int maxn = 1000010;
const int INF = 0x3f3f3f3f; int n;
LL num[maxn]; LL phi[maxn]; //相应φ(i)
int flag[maxn]; //flag[i] = 0说明i是素数。否则不是素数
int prime[maxn];//存素数 void get_phi()
{
int i,j,k;
memset(flag,0,sizeof(flag));
phi[1] = 1;
k = 0; for(i = 2; i <= maxn; i++)
{
if(!flag[i]) //i是素数
{
phi[i] = i-1;
prime[++k] = i;
}
for(j = 1; j <= k && prime[j]*i <= maxn; j++)
{
flag[i*prime[j]] = 1;
if(i % prime[j] == 0)
phi[i*prime[j]] = phi[i] * prime[j];
else phi[i*prime[j]] = phi[i] * (prime[j]-1);
}
}
} int main()
{
get_phi();
num[1] = 0;
for(int i = 2; i <= maxn; i++)
num[i] = num[i-1] + phi[i]; while(~scanf("%d",&n)&&n)
printf("%lld\n",num[n]); return 0;
}

版权声明:本文博客原创文章,博客,未经同意,不得转载。

上一篇:带你了解数据库中事务的ACID特性


下一篇:Farey Sequence(欧拉函数板子题)