NYOJ题目1102Fibonacci数列

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAsQAAAKFCAIAAABEM2gdAAAgAElEQVR4nO3dP1Iqy98H4HcT5i7EmIVokZi5AhMSjMxNrCL9JQZapuQ3OFUmmpGd8CyBN5g/dPf0DAMtqPg8ZdU9wDD0DNzpz3y7B/5vDQBQ4P++ugEAwM8mTAAARYQJAKCIMAEAFBEmAIAiwgQAUESYAACKCBMAQBFhAgAoIkwAAEWECeA43l8nZzfnZ/P79/Dev/cXN+dnN+dXfwrWeXP99DltBPYiTMAxNF1m+vf4vF6v13+uz27Oz24md3/Xwc3zi9ePL230vpLN+Xt/cTO5+xuFiafHZuvqhZM08HE3z+2uTuwQJuBbECbgGIbCxKbjjPvXHxom0s15ejyvMsRTGyaCtNE++t6zkkyYeK125vWTMAHfhDABx/CbKxPrj7v5+cXjcxsm7l4nF3WBIRsaNslgcGREmIBvQ5iAY2jDRHoKnvPTw0Tk+aqnwHA2v3/PZ6xNMqjrFlXkagkT8N0IE3AMg2Gi6RGb2QBRmAjO3ZM+dd0teMR96rj1tK/em2CSVwmfnnso3pyhMFHXKuoV1i0MpkTknruJIMIEfBvCBBzDnmHiOR0FCJ5en7UPzE8cWE8bCLK1gSAuZF6laUPfQ+nmrNdRLNhsQpNv6nuqZdrBkTTlCBPwfQkTcAw9cyaq7rYvTAxlhaFlOnMv5t1euel9/95fZKJD82j2Vaq+v/+hZHN6M8FmDddP62jwYr1eN1Fjky02Qx7CBHw3wgQcw55hIulZqzJDcIlEVEXovSokvkozvicRzZ3Mj4w8vd6/Dz0Ub07bhsfnfKpoX65asqlbdKZe1rWNi9cPYQK+HWECjmGvMBFNXwh65aCbz0+SiC8SyQ5bdM74Mw1rxiYyQzMDDyWb83E3Dy4BbVry9Hh+8Xp/dXN99VhvabzAZsjj6TEMJZO7vyZgwvcjTMAx7D8Bs1EQJsL1xGGi9+scPi1M9F0Tm5RP5pOL7h7oFjOqlxMm4LsRJuAY9goTQR+5mcDYf2nG5s6BUBKFibZV7Uqap6RfAhG+ymPfMEf10I5hIrpkI/yGifvuvI16u4QJ+G6ECTiGPcNEz/SCLcuk0ye3holmgTSO9M6dHPdQczVHfJlG/aKZcZae79XoVEGECfhuhAk4hv2GOR6vk9P6XCzIjlDE69lzmKNngXoTeh9KNids59WfJhnkCiqZL9LITfIQJuDbESbgGPaeMxEME2R+VzOpTyQr3x4m1tEow+NzPMyRNm/kQ7nvmYiTR+cajezK19uLFsIEfA/CBHBofUWUoOLynE742FaxqAgT8C0IE8ABRbWTuhzy9Hh+9vjcqTq0VYrrp/wXabQ6X7PdnzaAYxAmgEOqCgzZysHH3TwZ13i+in8ytG90Iy51KEvAVxMmAIAiwgQAUESYAACKCBMAQBFhAgAoIkwAAEWECQCgiDABABQRJgCAIsIE39VyNpkuVu3N1WLa3F7OJjnTxaparDVbRjfbe8N1zpbr1WIavlLYgs2yv8A+29u379IVDyzkLYOfT5jg68ShIO0cMj3QQKfU9C51Z9Pc0d4MVtHebh5Me6ZmmYKe6fkq/MnsSvv7n8kPSex6/8EcKkx03oSeh7/yLQt+/rT5cu7kF1nb3xDpub/3t1X71hNvYtju5az+/yGNzdtzG3wRYYKvE2SDbclhayeRhon6CUOnubnHmkP4/j1T+xtUcZj4cx33Uvv++5BGbW9PWSjt8LI7N7/0l79lH3fz3E/D9+32nvufHoN3/M/15gMw4u0Lw8RyttngOGQsZ+IE35YwwddJw8Sif/ii7SS63Ul7fxAm2hPXgdPczavvepq7Wky3HNX/3l/EYeLpMTwf3fzA1a73J7tvMlu0+6Mq/ie9b9T3b+tmx4aJcNO7g1E7lJPa53zlW/b+OtkpNIzLds9XbXFilzCxWkzT+BAP8RjF4ZsSJvg6+1Qmkl6kc/9qMa162E326KuZr1b1eg4fJoKuZb1eN7/Bvfv9kbYY3jQputFsQXBWP9tyVrtHmEj3bydMVAsMzXL54rfs426eGXdYr4vCxNNjUOoYHyY6pYcoTASzhuDbESb4Op05E1E/0hsmRlQmttfM+8vw08WieM7E0cJEVIHodDs7dj+7h4kow9R3pLNmM6uMn/a1b9nz1c35xTyY7tDu53iuQ98ciLhiVP3eepxOhpbf7NTJdNqtO6QhTFmCb0uY4OtkKhNB71NQmdh0K/XNqI/pdDifPwHzm4SJTf87KlLsGibqlwnP+qNdmS0HhFMCNot93Vv2fBX1/cnNxp/rfA7ouf/9dZJOmhlcvioyTafprjHMwY8hTPB18sMcQb9QGCbiyX2b3rU+HufPdIN+7OeHiXg7tyWKXcJEtdJ4akZ8yeZyNplOp/1TYdo2fe1blu7q99dJZjJm72jI59zfvHtp/Equ8ujchm9DmODr7DlnIlcCj8JE8MCm0lFXjHPj/encv88PE4ebgDkiTPTf113h+Ks5Outqpj5UD1Tr2va2tk/8urcs7d2j6Q79i227v6fCsSVMrJOQloQHpQm+L2GCr9OZM5E+ur0y0epUJtq72/H4WXJa19szBS34rKs5DnFp6Jg5E7NwD27rh/a5miPRLRyNCxNf+ZaFl3H+vb+oCxUfd/PNOxgMW/Td/3wVvEfBFSJ9y6c7JanytJEsubZDluCbEib4OvtUJratK9MzBUklOhzHPVNdjM/0ah2DYaL9non4G5DCh9IBi13v32zytspEGNdGfVHlNwkTx33LojmSbQXo6TH/Pn7W/clO6e6C6WKVTMB0LQfflzDBNxMcP+PB42wn0Vm6e6aaq/d3ZgBGC2W+ruFXKAgTm/chnRcZztbMd4neMvj5hAmgsv8cEeCXEyaAijAB7EmYAACKCBMAQBFhAgAoIkwAAEWECQCgiDABABQRJgCAIsIEnLT6CyVHfIeEn34A9iVMwAkJf8wh+SH37i99Jb/8kLV7uPh7fzH4kyLACRIm4BTVlYh8XtjEizorJL+Hsf9XYY74sVPgBAkTcEKWs/b3zpofnaxjQea325sf+R6Q+53KgV/gfHo8v3j9aG593M03P8IJnDJhAk5JnRnqnJDPCsHvvu9TmegPE89XN1F6eHo02AG/gzABp2WTI2bLIBb0VCbaMFE8V2ItTMDvJUzAiQkrByPDxCcRJuC3Eibg1ATXbWQnYNahYrWYTmbL/ks6dg8awgT8VsIEnJgqHlSJYagyEV01Gj22nPXNsNzCBEz4pYQJOClVMKiqDoNhIk4Qq8V0Ml2shi7VCBftW8SlofA7CRNwQpoQEV0cmh3BSKoRq8V07PjGtrzxfOVLq+C3ESbgdHSmVPbOsawe2GSN5MrQsqs6gN9GmAAAiggTAEARYQIAKCJMAABFhAkAoIgwAQAUESYAgCLCBABQRJgAAIoIEwBAEWECACgiTAAARYQJAKCIMAEAFBEmAIAiwgQAUESYAACKCBMAQBFhAgAoIkwAAEWECQCgiDABABQRJgCAIsIEAFAkGyaeHs/Pbs6v/jS3/1yf3ZyfPT6n/6593M2Dhbsr+XMdLw8AnJDyMFEtfHZz/ZRfyfPVzfnZzfnZ/P79IFsAAHyp4TDx/jo5q6JA/q8KEB938/NOuSJMJB93c2ECAE5UGiaqwkPzd/H6sbmzd5hjvf57f3Fz/fT34+5xIHk0awMATslnzJnIaUJJdy4FAHBSRoWJAUElI1i+Gfio5kwY4ACAE7YlTPy9vxgxbJGrZEwu5sHCruYAgFM1KkxUpYVggKOamNkTJp6vbs7PHp+TqzlMmACA0zQQJs5uzi8er3cNE+2/O+WNyd3fY20VAHA0SZgIrwXdozJRP/3xeR0njGa16XdRAAA/3mfOmXisJmPWFYh47OPjbq4yAQCn6JPnTPy57p2VCQCcpANMwOysBAA4YZ8QJoKhENEBAH6dXJiovnJqcvd3zJyJ56s2bQwubAImAJymNEy0gaD6mqmwMhHYVCb+Pl/NRQQA+MWywxwAAGMJEwBAEWECACgiTAAARYQJAKCIMAEAFBEmAIAiwgQAUESYAACKCBMAQBFhAgAoIkwAAEWECQCgiDABABQRJgCAIsIEAFBEmAAAiggTAEARYQIAKCJMAABFhAkAoIgwAQAUESYAgCI7hYnlbDKZLQ/VlC1Wi+l0sapaMVtm/ttaziY5m4VWi2nvrXoF1UvFetbbWf0eWzaZhK/Y2aJqiY7gKavFtL8B9a5bLaZxM9td2rkBAON1w0Sny5wulnUvdOwwUfV+i7YPrDrZ5WwyW2762/5uNO2T29QQxYdslsiuse/+4Yd6tQmh04dn1xa0M3182/vShInVKs1Jq8W0uS1MALCnfJjo752/rDKRPTmfLTv3bzrE7Pl9HCbSJ8+WmRdq1/jJYaJtVEmYWC2mQQt7KhiDZZQmjPWUYwBgm3Fhou5oqoc2pYtgsbCe0d69nDWFhahXjru8uF+LH6heN+zmqtfZPCd4LO6Wk361KfN3wkQSPtI6RbjEocNEfhgljA1JmBgd7sY0b3yYiAMMAL/ezmFi8+By1nQpm3+tm7GJZbNEFCGqf69Wq3DNzb3RiH51vhyHiXp1i1kQD2bTsC/Ohoy2G94eJqbTadJLJmFi3Mn+KN2SymK22W/VP8JoMzDM0Xff4IOjqhjZyCBMABAZMWei7dTTnFHHg2DcPbo/zSWd5dqXmy17zrKDMPG/2STqauu+cLZcztpE04kP8Y0xlYn1QCgZU5kYPdCwmakw6aShNEz0r3SzWL2SXOCZLcfMh+hWJgx8ADDKHsMc6aLdJ+QDQthvdgY0epNGPMzRnS3ZBILOQs0aN40YN2dinXbO2ekLn9TLtn1/3dLdKxPL2SRXFUmauHWcI7P/M/saADK+IkxE/V+9zNYw8b/uKXd4cj8NT/Cni9V6vVqt6qzQSSLDlYlm2aat7fSEkcWG8VaL6XQ2m9bVndls25yJtIQR7bT4qpYkTGyLP7l3QZgAYJySMNH0Nmk5fMswR3zv2GGOVdy5Ra8ZzdlItyX6JoXRYWI9cGeuZ96j520LKFuHOdKWdBvV2XtpG5Phmrj90bPDd88oBwAj7Bwm+iZa9t3fDRPd4Y7NkEMYMpIJmKvlsik1hCfsm6JBptE90yLHh4n8sEp+WGHXMLGc1bNCR10amgxtpNfApMt3VpsZ7dk8kAsN/VtkAiYAkd3DxDTTnw9dGpqZM7HJBNW1GeG0gGjQIJ0zUb9KNSDQXl9SjWpEPVx0HUnHtjkTnQ0Pntff8+7XvY4LE3E7No/3BqbOrmyXTaodfbspG1GCh4QJABo/5rc5uv1et08LBlL6r2kMY0O+MhF1xMFFrpnBgYIJE5s2bQ0T6fZsrmdJnxpN6Oxqwlg7CyRTdRmIVgCQ82PCBADwPQkTAEARYQIAKCJMAABFhAkAoIgwAQAUESYAgCLCBABQRJgAAIoIEwBAEWECACgiTAAARYQJAKCIMAEAFBEmAIAiwgQAUESYAACKCBMAQBFhAgAoIkwAAEWECQCgiDABABQRJgCAIiPDxHI2qU0XqxFLzZaf1L5v35jtL3/gRo57oZ1X9o3bs1pMj/6uLmefs0EAJ6kbJjbH76BPWM46R9LqkJ45qq8W0zFH+s7r5A7WYxtTL9u9e2RjhlcycP+ujcwa28jiF8qucv+d9ontaT9NuY9U1J7VYnrQXr23JYd+YYCfKx8mOj1J2kOEC6VP2LX/3qwlHya2NmbTqZWEib6VDKx8p0YO2KXzLnqhdGWFO+0T27OcbZ60nE36P1HZ1/xMAy05+GsD/FD7hYn4ZtL37BMmVotp9ji9Q3eVP3HcsTF9Z5+DZ6Uj99hktmhPeuN1fWbnPfhCI7cr157VYtpZ8PPbk2/Vpj3JI70r3y/Qbm2J4gRA1l5hIl0kvr3Hgbz3lO+kwkR7R39nOaz4hTqOEybGt2fznOz+SZ8/tPKm8lLU+edaIk0ApEbMmZgt9w4TmXkRmcP7wBF6RGOG17JjY/YOE9sa2d1F+dLOYCOLX2jkdu0SJj63Pc0y8UJte7Z/8Hrb2MkgWz+WuZYY6QDI+QaViaHj80lVJsaEiUEFLxT0n9vPtDftyXe7Ybj53PZkO/AoTPRO3Rl+k/rG0QbkWvJp4ycAJ+XLw8Twuaow8akv1HGkORNj25Ptv8vCxJ6jHT0tESYAcg47AXN7PXlL2fgzw8RBhzk+K0xsHeY43TDR13/vOcwxkCK2fRL6W2KYAyBnvzARLZQ+YYeTt/6+bJLvPbKN2baug1QmdmykysRwe5bp5aDZ9uQmYGZXXlBA2NoSEzABUnuGiWbBSebAO/pAPuJ60HGNSc4090s2fSvpuX/HRn6/MPEJO+3z2pOrFeQGznKXhu40u3PUNvW2RJYAyOqGiax8MSCvdFh562sdszF7t+FojdzlhUb6zu35ynEGYxwAed8vTCxn2579DcLEN2rkLwsTX1cdUJYA6DM+THSmqQ0tddDzt2/VmO0vf+BGjnuhnVf2jdsTTFc5muXsczYI4CSNDBMAAHnCBABQRJgAAIoIEwBAEWECACgiTAAARYQJAKCIMAEAFBEmAIAiwgQAUESYAACKCBMAQBFhAgAoIkwAAEWECQCgiDABABQRJgCAIsIEAFBEmAAAiggTAEARYQIAKCJMAABFcmHi+erm/Gx+/57c/ef67Ob87Ob86k/v2t5fJ5knAgAnLBMm/t5f3JyfPT7H937czc+rMNF5qPb+OhleAAA4QWmYaMoPzd/k7u96vV4/PZ6f3ZxfvD5XkaKvONHkifpZAMDp61Ymnh7DNPDx/reJCNX4RVW36M0TTQHDYAcA/BJ9YeJifn52c/305/5ifh7XKjZ/F68fmTVuSRsAwGnphImPu/n52fz6qgoT64+7eT4WPD1WC3Q9X5k5AQC/RydMPF/dnJ893t/VYaKeLdH8Xd+9Ts7m90+vk97aw2bWhZkTAPALZCdgNhMt2zCx+cfWMBGFD8UJADh5W67mmN/f7RQm6gkT10/tP46zGQDAV+n5BsyP/YY56oUfn9ebq0lzkzQBgJMxLkyMq0zUVY22GlHNxDRzAgBO2ueFifoijrAUEX1BBQBwksbNmdg+zBEOcATq77Ay2AEAJ2vXykQ1hPEeh4lmXkVuuqXvsAKA01YeJoaSRGXEz40CAD/VyDBx9dj84kZTaahnQqSTLvOaHwBzpSgAnJyeMAEAMI4wAQAUESYAgCLCBABQRJgAAIoIEwBAEWECACgiTAAARYQJAKCIMAEAFBEmAIAiwgQAUCQbJlaL6XSxiu9bziaTyWyZXclqMZ10ntCzXM8q4lfKrmy1mE4q3XVUjw2se9xL72i1mA6+aK4By9mkq7RlvQ1p38nlrHo8/e+ehj4Nv95yZt8Av0wuTHQ73uqeoQ55zAF05EG2DRNJv9sXVzYhIxE8Iew7c935Psf+3tfNNOCg/ctqMZ1Mp325ptr05WwyW272wmox3b85BwlmW+QSZvsGJI35qvvjJcQJ4BdJw0TS086WcZ0iV7NYtw8NHkCzp+RJtxstE6ysb93L2SQXMtLz5qbrrCooi6Rf2uvIv1pM++NNZtHDdS1tTskElmzemS0794/bkM0L7rR8ofYzEb9ouLXf4d/dVh9zJwF8rUxlIqqAdyLAdDbryRODpe/lrL/LSg68meNwrr/frLFTdoif3p6F1ytO179HmKh7kYHaRPsKbeMGctj+4t3aN9xUvYnRm9ostmnVcjaZzBbtFu2RGUeuoV10h33e2bL4Tdw06qvuz7VYmgB+jW6YCArifQPr2dOu5WwyneY7s55Od1Nyz4WJoVGE/IyOuMfMvHh29KTnaWNs9kPcq2Q6kqr37N+mPTqeoDiy6Zs7ZZA6XS1m7cusFrNp277NWxzFsN5ZMNuGuratodn5O25v5jPS2cpmRspX3J+hNgH8Ip0wEceIoONtj5nZc676aJ/ta5az7oSL4GZPmEjXnj9mN93zdLFqbmQP4UEu+oTKRGdFq9UquJV7hZ6KQbhXe7NTN3YkBZi4T9uUiDb3Vy9Vv8hsuZy1KSRodJyH+prc20UOrWFgnkF+/KtTXfppYcK8CeAXScNE1KdNF4tNp9NGjL5rPXJ14HjF/WGicy4ddzuZA/NyFvU5gz1S3KZPGuYY2/EnDU1Ws0930+3BuveEvW9mA+v3MNwVBwwTgwNgowgTAN9Zz/dM5CsTfWEiPm7m+5vMmXc3TCRF8DHnrJno0d4dVP7jrejYs08Pe+L8tSP9+Wu9d5jINiW7psymBuMy8ajUYSsTfe/TSMIEwHfWHyYmk8lkNhtRmVimcyuzHVHvsbVeetNLRf9KnxK8eDSo0bm//zj+ScMc0UUuq1W40Z12f1WYSDYu2vL0bRsXJsZfHpxfQ2bOxD7DHMmb+A0nYJozAfwmaZjYHNnHVSZ6rnvM193De8J6QT2avylPjAoT684jA2WGYG7FDmFi4MRzzFDH8DSTY4SJ1XK5CvZ0Mq+ic8/2MDF0lcLINQw2uEd3ZeEavsO/M1vYs/VlNRqA72jrMEf36sv4asKhKm965tt/+EzO63cY5mhfK/tIu5a95kzsW6n+RpWJdVhlmgSzODYzVoOdPSYK9O+UHcLEDpIPwZbZNV96f7zI8O5TuABOyYgwUV1VGF2t2QwfbzkcxmFj+FQ+uByjfc5gZSJY3eij8k6Xm+7a2Q80KA4TcbnnMwzOmegkp3GXmvQzG2CbwT2kMgGcnp4wwfoTCwcnp2dwi/V6vfsYDsCPJ0wAAEWECQCgiDABABQRJgCAIsIEAFBEmAAAiggTAEARYQIAKCJMAABFhAkAoIgwAQAUESYAgCLCBABQRJgAAIoIEwBAEWECACgiTAAARYQJAKCIMAEAFBEmAIAiwgQAUESYAACKCBMAQJFcmHi+ujk/m9+/J3f/uT67OT+7Ob/6M7zKj7v5+dnN+cXrx2c1EgD4vjJh4u/9xc352eNzfG8dEc4yD62zSwoTAPArpGGiKT80f5O7v+v1ev30WOWD5yooxMWJ56tgyW6YeH+djIggAMDP1K1MPD1GyeD9b5MGqoGPqm4R5QlhAgB+sb4wcTE/P7u5fvpzfzE/j2sVm78mLggTAPCLdcLEx938/Gx+fVWFifXH3Tw/4/LpsVpgLUwAwK/WCRPPVzfnZ4/3d3WYqGdLNH/Xd6+Ts/n90+skGOmowsS2P2ECAE5SdgJmM9GyDRObf+TCRMLVHADwm2y5mmN+fydMAAADer4B82P8MEe9wGYUoxsm6nGQbd92BQD8QOPCxFBlQpgAgF9NmAAAioybM2GYAwDosWtl4mm9XjdfHSFMAACfFyZG/AkTAHCCRoaJq8d61OO9+W2OzG+U91KZAIDT1RMmAADGESYAgCLCBABQRJgAAIoIEwBAEWECACgiTAAARYQJAKCIMAEAFBEmAIAiwgQAUESYAACKpGFitZhOQtPFKnp8OevcFT13tux5odVi2nnicjaZ9D1jtZj2v1L/Kw617xMkq++8fruVy1n1QPrfcE05m4XidY/e0sx+23uf9LQxaOVyFr+B4WYGL9vZ+p5tGtGgaEs6WxZ+fINHlrPuJ3m89P+J9EMbbceun/O+LTm6zFb2vfM77RDgVxisTGSOcMMHvbRv2egeX6p7ho47/WvrXWm+1yo07jDbdFdVE5azyWy5ac1qMe1pV9ridpvSLmrUlnabOlt2IkH/HooXjaJM913ftGnTlvpfy9lkkqauoRX0NH+z8/I7u7sPmlWGq14tppPpbDYim/ZI2tnebP5fSF9s3Oc8/j8pvhV9CJJ2j0gmn6M/gY3fIdUHKrcscFo6YSI5t6wOgwMd54geNlmqPti3x6lsR9M+NFS5yKw118pPtKUykd1Xs+VAvafTH3bDxPgtrasSUSNXi2n1Ho7eF9n+MBMqM+90c3ccLeJV9HxmpovVer2c5csJzbPrLata2F1R22dvXm21mE6Cjm2vfixIKJtXX3f7zt0+56PCRLQBzc2DlzA2n656L/dHtsEd0u6S6OMoTMApylQm2i4gV4UYOgQOiPrMTi8wnc168kT/aVh0aG5TT9KzbyLPbNEeIMuPxdu6pfR8LNhNcY+SZILoyBz+Y9yWRoWQtuvODzUM7JNg7fmOv7f2FNZi2lZE66hqNkFHH3VCvbu5pzaxXCyS7W1jRrPeSbqj9ggU4/vOXT7nI8NE1Oik/ZsXCNe65X0aFIbB7ucgLb+MCxOzRV/lprCxwDeSG+ZITu/Szqw/THSOgVFHFtT/My+a7VCWs8l0mj8V67Sqs1wUJsLefNc4MXKYI3qxxeaUbLWYTafZLj3c5k6BvjdMDGzp9lpR8+ID+yTuRJJ91TnpjDc/k47SRmbCRFanyt6uO8pE08UqOY+vO6/lrOq90x2w2PkDsFPfOfpzPvadCnZFFGLDG82/w/tWi9kuW9kZkOi+PW2U2TFMZANk/P7ul/KA7yM/Z2K1mE6m01yfkgkTy83ROTmsxz1odL6YHDB7x9TjviJ+sDtYkO+q40JCWaF4YEwmeqWqJXX/N1s2BYJcfIhvjKlM9G7pcGvDFxzYJ7kwkZz6hy0ZsVuax1eLaRuzenvOZqd1gkQ7gJMO40w6be98ZEaX0Hoa33TVw33nnp/zbgNz7U/2U+d/xMmOo1kFRu+Q9mPW+VR3mnqstgOH0TcBM64QR0eH+BgWHFTWSW8anvgGJ6uLTcfaHnpzB9nsulppuaCbYcLhms8JE/0nk50zuO4oc31qGe6UzeE/ruh3U8XILd2tMlEcJiJRtxKtdLNk82GZzbZc/7AOUkK8oXUzlsug9rMJbVF9Z7b1YpRxgr4z6hjTvnOnz3lSuRiq8UV7I7zd2ar23k//gEe7bewOyfw/HDw1eRu69wA/yGCYiA9e0fGiXSq5t/lXpv/Pn7H1hYn4cJqtt3fP16NHPjVMLNOZZJkNyx6Mg5pNOD5Rl/68EmQAABEgSURBVCpWq1VyIj6yMpHf0kyf1LOph6lMxN1qs1xTk1g2ww9RdaFvPCBsVabrzHd1UZjo76t3k5Q7BvrO5rVGfM53DBNpXzvwKS5IFP27KVdGG7FDglZv0rMwAScoHyaq/7Fzh5a0xNw5ZVxM45GPeKWTyWQ2G1GZiAZU1+vMwbO/i12nd5aGiWBEekuYSA660RM6m7TOPrBLmOg0YHSnuy1M1J3RotM7bK9MZLuxzTYkPdBQL9+7x/rfimAHRN1b9d9V7wW6I+RGXzaPxGFixOe8MExs7Xv3yswjw8Tmrm07JGplVJNKX8owB/xsuTDRHgEyR5DwGBA+3BnH7h5dgwP8wBlb/fR8l5k5K28e6izfc0QbOGptOz6PCBOr5XKVdmjRPkjXHw8nZdu/w5Ymd3aukon6ssw+SesvbR/cNn5cZaLT2ExlI7Pt6So7cynChuUiUvYEerMhvR+t7h5JxXso/hiEZ9ujP+elYSLZe6vFbLEK51z2bc7gZu4QJsbskNzHLIqzcYBVl4AfrBMm4r6203cFh5veI0+2cwvLv+EZW/uUoJcbqnuH4waZ3iTX0pFhoqfZ0Rr7pOeM1ZnpJPjyhU1fFveIvWdjUYli5JZu9lL7esmshXBAZmzAii/QDN7+LWEi6P2Dx9s3v73oJa7e9G5oEia2vYdpBgufm3mbh979pKtLKya9wxxbP+eDto8ChOtI3+fd/t/MrHCoQaN3SK6eEpUq+j/VwI+ShomeEexubxQPj485BIUH2UV7PhOe9g4VtqOWpLWMfJ1/x+NTz6ZHC4yZM9Gp3ubruWMr9eO3NK0rDM2Z2C53yrkO+pHlLH7/c8EnPPNsZk6sOrtkFcyw6G/JCD1fNJnulb4X6a9Y9HfMmY/aiM/5VluD7b6GP+SjKhM77xDgF8jPmfiNtmYJTtgvefd/yWYCRydMAABFhAkAoIgwAQAUESYAgCLCBABQRJgAAIoIEwBAEWECACgiTAAARYQJAKCIMAEAFBEmAIAiwgQAUESYAACKCBMAQBFhAgAoIkwAAEWECQCgiDABABQRJgCAIsIEAFBEmAAAiggTAECRbJh4f52c3ZxfvH40d3zczc+v/jS3/t5f3AQ3m3vOHp/7XiVe4fPVzfnZ/P49WejP9dnN+Vmy5u56uk8EAL7QmDBR3Ty7uX5ar9fr9dPj+VmcBurlH68vbs7Pgr82FkQrzCePj7t588SeUNI0Yyi1AADHNq4yUQeIi9ePOgo0wSJ4dHL3t6kutJ393/uLm/OL14/NCpvyQ/M3ufsbrv+5ihR9xYkmT9TPAgC+Xhom6qzQ/l3ftfWAzl80bHFz/dRNId0wESaP9Xq9/nj/20SEqtTRNKAnTzQFDIMdAPBN5CoTdYcdVibW63W2JrFeN9WI+f17WMAInpINExfz87Ob66c/9xfzfFLJNCBqxtDUCgDgeHJhoqo0jA0TwRSKYN5DNRjxpxsmPu7m52fz66sqTCRTO9PVdoJL0DwzJwDgW+iGiXae46gw0Q6LzO/fq27+8bmpbWTDRLXM/V0dJposEo6qzO+fXie9tYfNrAszJwDgG+iEibi68PjcmUURz51su/b5/fuf66j8cHP91DMBs5lo2YaJzT+2hokofChOAMCXS8NEcLVF1eUnEyAylYn55OLm/Gx+f9d081d/mimZW6/mqJ81Oky0beibwAEAHFk2TFzM00tD1+u+ORPPT1V0mF9fzdsYEVU1kgmY6/V6U7rYcZijXvjxed2d7AkAfInMpaFNXz72ao7kGy2b2kP7pRQjwsS4ykS95rYBVXAxcwIAvlRnzsTz05/Ml1at16PDRNjHf2aYyFxjEn1BBQDwJbZ8A2bv7MvweoooTNQdfDU1cuycie3DHOEAR6DnKzEAgKMZ+XXa6/W4ykS9TDr0ML4y8RQs34aJZl5Fbrql77ACgK/1qWGiHono9uvvaaVhhzAxlCQqI35uFAA4lE8ME9WARXaiQ2dmQxomrtqv0Yy+Bas76TIv+V1TAOB4smECAGAsYQIAKCJMAABFhAkAoIgwAQAUESYAgCLCBABQRJgAAIqkYeI/AID//vvvv//2DxP/AIBfT5gAAIoIEwBAEWECACgiTAAARYQJAKCIMAEAFBEmAIAiwgQAUESYAACKCBMAQJGDh4mX20nt8uHt0FsDABzdYcPEy22bId4eLieT25eDbxAAcFwHDRMvt2E54u3hUnUCAE7OIcPEy+2mFvH2cDmZTNQmAODkHDhMXD681TGi/pcwAQAn5tCViXDipTABACfokGEimXNpzgQAnKKjXc0RzaAAAE7Gob9nopl4ae4lAJwo34AJABQRJgCAIsIEAFBEmAAAiggTAEARYQIAKCJMAABFhAkAoIgwAQAUESYAgCLCBABQRJgAAIocIUxUv/XlZ74A4DQdOExUv0H+4NfHAeBkHTRMvD1c3r78qyKFMAEAp+kocyaECQA4XcIEAFBEmAAAiggTAEARYQIAKHLYMPFyO4mJFABwanwDJgBQRJgAAIoIEwBAEWECACgiTAAARYQJAKCIMAEAFBEmAIAiwgQAUESYAACKCBMAQBFhAgAocugwsfmpr8uHt4NvDQBwdAf/1dD6d0LfHi7FCQA4RUcb5pAmAOA0HS1MvNxOmioFAHBCjhQmXm5NmgCA03SMMPH2cClKAMCpOniYkCQA4LQdOEwY3gCAU3fQMLH5komGKZgAcGp8AyYAUESYAACKCBMAQBFhAgAoIkwAAEWECQCgiDABABQRJgCAIsIEAFBEmAAAiggTAEARYQIAKHLYMBH+0pcfDwWAk3S0ysTLrd8MBYBTdLxhjpdbxQkAOEHHChNvD5cKEwBwig4eJtppE8oSAHCSjjrMoTYBAKfniJeGmjQBAKfoaGHi7eFSZQIATtBBw8Tbw6XvmQCAE+cbMAGAIsIEAFBEmAAAiggTAEARYQIAKCJMAABFhAkAoIgwAQAUESYAgCLCBABQRJgAAIoIEwBAkaOEieoHv/zSFwCcoiOEibeHy8nt7a0wAQAn6eBh4u3hcnL58PYiTADAaTpwmKijxL9/wgQAnKjDholNhBAmAOBEHTJMhAFCmACAE3XAMPFyO+m6fTnOdgEAR3Ks75lQmQCAEyVMAABFfAMmAFBEmAAAiggTAEARYQIAKCJMAABFhAkAoIgwAQAUESYAgCLCBABQRJgAAIoIEwBAkaIwAQDw395hAgBgJ8IEAFBEmAAAiggTAEARYQIAKCJMAABFhAkAoIgwAQAUESYAgCLCBABQRJgAAIoIEwBAEWECACgiTAAARYQJAKCIMAEAFBEmAIAiwgQAUESYAACKCBMAQJFsmHh/nZzdnF+8fjR3fNzNz6/+NLf+3l/cBDebe84en/teJV7h89XN+dn8/j1Z6M/12c35WbLmjI+7+XncPADg64wJE9XNs5vrp/V6vV4/PZ6fxWmgXv7x+uLm/Cz4a2NBtMJ88qgjwtlgKAmXFCYA4FsYV5moA8TF60cdBZpgETw6ufvbVBfaNPD3/uLm/OL1Y7PCpvzQ/E3u/obrf66CQlyceL4KluyGiTrrbIkgAMBhpGGizgrt3/VdXZbI/EXDFjfXT90U0g0TYfJYr9frj/e/TRqoSh1NA4I8IUwAwDeWq0z0jCPkahLrdVONmN+/hwWM4CnZMHExPz+7uX76c38xzyeVTlgRJgDgW8qFiarzHhsmgikUwbyHqvv/0w0TH3fz87P59VUVJpKpnelqq9cSJgDgG+uGiWa65bgw0Q6LzO/fq17/8bnp77Nholrm/q4OE00WCUdV5vdPr5NgpKMON1v+hAkA+BKdMBFXFx6fO7Mo4rmT7YTK+f37n+uo/HBz/dQzAbOZaNmGic0/cmEi30JXcwDAt5CGieBqi6rLTyZAZCoT88nFzfnZ/P6uqTFc/WmmZG69mqN+ljABAD9WNkxczNNLQ9frvjkTz09VdJhfX83bGBFVNZIJmOv1elO6GDHMUS+wGcXohon6Rbd92xUAcACZS0Obvnzs1RzJN1o2tYf2SylGhImhyoQwAQDfWmfOxPPTn8yXVq3Xo8NEePGFMAEAJ2/LN2D2zr4M5mDGYSK6UHPsnAnDHADwY438Ou31elxlol6m/U6IvhX2ViaeguWFCQD4AT41TPR26u/p1Rm7h4kRf8IEAHyBTwwT1YBF7je62m+1aqVh4qr9Gs3oW7BGUpkAgK+TDRMAAGMJEwBAEWECACgiTAAARYQJAKCIMAEAFBEmAIAiaZj4DwDgv//++++//cPEPwDg1xMmAIAiwgQAUESYAACKCBMAQBFhAgAoIkwAAEWECQCgiDABABQRJgCAIsIEAFDkkGHi7eFyMpncvjS3X24nlw9vB94gAOC4Dh0mLi8v2wAhTADACTp0mLh9ebltEkQYJqqqRWVTuwAAfpzDh4l/L7d1XGjDxNvDZRwrFCwA4Mc6Qpj49/ZQDXU0YaK5v2H4AwB+sGOEiX//qqGOJjSk4SENFwDAD3KcMFENdahMAMAJOlKY+Pf2cHl7m50z8XI7kSUA4Oc6VpioL9+IIkRNkgCAn8w3YAIARYQJAKCIMAEAFBEmAIAiwgQAUESYAACKCBMAQBFhAgAoIkwAAEWECQCgiDABABQRJgCAIof+oa9J8GPjfmocAE7QocPE5eVl+EuhwgQAnJrD/wT5y22TIMIwUVUtKpvaBQDw4xw+TPx7ua3jQhsm3h4u41ihYAEAP9YRwsS/t4dqqKMJE839DcMfAPCDHSNM/PtXDXU0oSEND2m4AAB+kOOEiWqoQ2UCAE7QkcLEv7eHy9vb7JyJl9uJLAEAP9exwkR9+UYUIWqSBAD8ZL4BEwAoIkwAAEWECQCgiDABABQRJgCAIsIEAFBEmAAAiggTAEARYQIAKCJMAABFhAkAoIgwAQAUOVyYeHu4nES/NO4HQgHgFB36V0OD7JDcBABOwmGHOYL8kEaJzW+QRwGj+qXyWlzXAAC+o0PPmXi5rTJB89/43vTfbw+XEgQA/CwHn4D59nA5uby9jULCy206/FE/mJlnAQB8b0e4muPlNhnLiIYy0qGOzYNCBQD8BMe4NDQuROTuyFCkAICf4UvCRDKDIs/8CQD4Eb4mTKRDHeGUiczQBwDwffkGTACgiDABABQRJgCAIsIEAFBEmAAAiggTAEARYQIAKCJMAABFhAkAoIgwAQAUESYAgCLCBABQ5JBhovrdrs0vf4755XEA4Ic5dJi4vLxsA4QwAQAn6NBh4vbl5bZJEGGYCH9tfFO7AAB+nMOHiX8vt3VcaMPE28NlHCsULADgxzpCmPj39lANdTRhorm/YfgDAH6wY4SJf/+qoY4mNKThIQ0XAMAPcpwwUQ11qEwAwAk6Upj49/ZweXubnTPxcjuRJQDg5zpWmKgv34giRE2SAICfzDdgAgBFhAkAoIgwAQAUESYAgCLCBABQRJgAAIoIEwBAEWECACgiTAAARYQJAKCIMAEAFBEmAIAih/6hr0nwY+N+ahwATtChw8Tl5WX4S6HCBACcmsP/BPnLbZMgwjBRVS0qm9oFAPDjHD5M/Hu5reNCGybeHi7jWKFgAQA/1hHCxL+3h2qoowkTzf0Nwx8A8IMdI0z8+1cNdTShIQ0PabgAAH6Q44SJaqhDZQIATtCRwsS/t4fL29vsnImX24ksAQA/17HCRH35RhQhapIEAPxkvgETACgiTAAARYQJAKCIMAEAFBEmAIAiwgQAUESYAACKCBMAQBFhAgAoIkwAAEWECQCgSFGYAAD4b+8wAQCwE2ECACgiTAAARYQJAKCIMAEAFBEmAIAiwgQAUESYAACKCBMAQBFhAgAoIkwAAEX+H+yPMhwsHrD4AAAAAElFTkSuQmCC" alt="" />

----------------------------------

这道题是有规律的,可以被3约掉的部分省略:

三个F(0)

三个F(1)

F(0)+F(1)

F(0)=7;  No

F(1)=11; No

F(2)=F(1)+F(0); Yes

F(3)=F(2)+F(1)=F(1); No

F(4)=F(3)+F(2)=F(1)+F(2)=F(1); No

F(5)=F(4)+F(3)=(1)+F(2)+F(3)=F(1)+F(3)=F(1)+F(1); No

F(6)=F(5)+F(4)=F(1)+F(1)+F(1); Yes

F(7)=F(6)+F(5)=F(5)=F(1)+F(1); No

F(8)=F(7)+F(6)=F(7)=F(1)+F(1); No

F(9)=F(8)+F(7)=F(1)+F(1)+F(1)+F(1); //No

F(10)=F(9)+F(8)=F(1)+F(1)+F(1)+F(1)+F(1)+F(1); Yes

即将它们拆解为最基本的话。。。。

困,明天写、

AC代码:

 import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader; public class Main { public static void main(String[] args) throws IOException { BufferedReader reader=new BufferedReader(new InputStreamReader(System.in)); boolean first=true;
while(first || reader.ready()){
first=false; int n=Integer.parseInt(reader.readLine());
System.out.println((n-2)%4==0?"Yes":"No");
}
} }

题目来源: http://acm.nyist.net/JudgeOnline/problem.php?pid=1102

上一篇:恶意软件的bypass


下一篇:Android学习笔记之性能优化SparseArray