一、Ransac算法介绍
RANSAC(RAndom SAmple Consensus,随机采样一致)最早是由Fischler和Bolles在SRI上提出用来解决LDP(Location Determination Proble)问题的,该算法是从一组含有“外点”(outliers)的数据中正确估计数学模型参数的迭代算法。“外点”一般指的的数据中的噪声点,比如说匹配中的误匹配和估计曲线中的离群点。除去“外点”后剩下的数据点则为“内点”,即符合拟合模型的数据点。RANSAC算法的主要处理思想就是通过不断的迭代数据点,通过决断条件剔除“外点”,筛选出“内点”,最后将筛选出的全部内点作为好的点集去重新拟合去估计匹配模型。但RANSAC算法具有不稳定性,它只能在一种概率下产生结果,并且这个概率会随着迭代次数的增加而加大。
二、Ransac算法实现示例
这一部分基本上网上代码及讲解都非常多,就不过多讲解了。
附上我在知乎上看到的一篇写的比较完整的一个拟合直线模型示例:
https://zhuanlan.zhihu.com/p/62238520
三、基于pyhton的Ransac拟合椭圆实现
1.Ransac拟合椭圆流程:
①. 找到可能是椭圆的轮廓线,可以使用cv2.findContours去找,返回的轮廓线数据点是[[x1, y1], [x2, y2], … , [xn, yn]]格式的数据
②. 随机取5个数据点进行椭圆方程拟合,并求出椭圆方程参数。椭圆一般方程:Ax ^ 2 + Bxy + Cy ^ 2 + Dx + Ey + F = 0
③. 利用求得的椭圆模型进行数据点评估,判断条件一般为:①代数距离二范数;②几何距离二范数,判断出符合该椭圆模型的内点集
④. 判断3求出的内点集数量是否大于上一次内点集数量,如果是,则更新最优内点集及最优椭圆模型
⑤. 判断最优内点集是否达到预期数量,如果是,则退出循环,输出最优椭圆模型
⑥. 循环2-5步骤
⑦. 完成椭圆拟合
2.python拟合椭圆模型代码:
import cv2
import math
import random
import numpy as np
from numpy.linalg import inv, svd, det
class RANSAC:
def __init__(self, data, threshold, P, S, N):
self.point_data = data # 椭圆轮廓点集
self.length = len(self.point_data) # 椭圆轮廓点集长度
self.error_threshold = threshold # 模型评估误差容忍阀值
self.N = N # 随机采样数
self.S = S # 设定的内点比例
self.P = P # 采得N点去计算的正确模型概率
self.max_inliers = self.length * self.S # 设定最大内点阀值
self.items = 999
self.count = 0 # 内点计数器
self.best_model = ((0, 0), (1e-6, 1e-6), 0) # 椭圆模型存储器
def random_sampling(self, n):
# 这个部分有修改的空间,这样循环次数太多了,可以看看别人改进的ransac拟合椭圆的论文
"""随机取n个数据点"""
all_point = self.point_data
select_point = np.asarray(random.sample(list(all_point), n))
return select_point
def Geometric2Conic(self, ellipse):
# 这个部分参考了GitHub中的一位大佬的,但是时间太久,忘记哪个人的了
"""计算椭圆方程系数"""
# Ax ^ 2 + Bxy + Cy ^ 2 + Dx + Ey + F
(x0, y0), (bb, aa), phi_b_deg = ellipse
a, b = aa / 2, bb / 2 # Semimajor and semiminor axes
phi_b_rad = phi_b_deg * np.pi / 180.0 # Convert phi_b from deg to rad
ax, ay = -np.sin(phi_b_rad), np.cos(phi_b_rad) # Major axis unit vector
# Useful intermediates
a2 = a * a
b2 = b * b
# Conic parameters
if a2 > 0 and b2 > 0:
A = ax * ax / a2 + ay * ay / b2
B = 2 * ax * ay / a2 - 2 * ax * ay / b2
C = ay * ay / a2 + ax * ax / b2
D = (-2 * ax * ay * y0 - 2 * ax * ax * x0) / a2 + (2 * ax * ay * y0 - 2 * ay * ay * x0) / b2
E = (-2 * ax * ay * x0 - 2 * ay * ay * y0) / a2 + (2 * ax * ay * x0 - 2 * ax * ax * y0) / b2
F = (2 * ax * ay * x0 * y0 + ax * ax * x0 * x0 + ay * ay * y0 * y0) / a2 + \
(-2 * ax * ay * x0 * y0 + ay * ay * x0 * x0 + ax * ax * y0 * y0) / b2 - 1
else:
# Tiny dummy circle - response to a2 or b2 == 0 overflow warnings
A, B, C, D, E, F = (1, 0, 1, 0, 0, -1e-6)
# Compose conic parameter array
conic = np.array((A, B, C, D, E, F))
return conic
def eval_model(self, ellipse):
# 这个地方也有很大修改空间,判断是否内点的条件在很多改进的ransac论文中有说明,可以多看点论文
"""评估椭圆模型,统计内点个数"""
# this an ellipse ?
a, b, c, d, e, f = self.Geometric2Conic(ellipse)
E = 4 * a * c - b * b
if E <= 0:
# print('this is not an ellipse')
return 0, 0
# which long axis ?
(x, y), (LAxis, SAxis), Angle = ellipse
LAxis, SAxis = LAxis / 2, SAxis / 2
if SAxis > LAxis:
temp = SAxis
SAxis = LAxis
LAxis = temp
# calculate focus
Axis = math.sqrt(LAxis * LAxis - SAxis * SAxis)
f1_x = x - Axis * math.cos(Angle * math.pi / 180)
f1_y = y - Axis * math.sin(Angle * math.pi / 180)
f2_x = x + Axis * math.cos(Angle * math.pi / 180)
f2_y = y + Axis * math.sin(Angle * math.pi / 180)
# identify inliers points
f1, f2 = np.array([f1_x, f1_y]), np.array([f2_x, f2_y])
f1_distance = np.square(self.point_data - f1)
f2_distance = np.square(self.point_data - f2)
all_distance = np.sqrt(f1_distance[:, 0] + f1_distance[:, 1]) + np.sqrt(f2_distance[:, 0] + f2_distance[:, 1])
Z = np.abs(2 * LAxis - all_distance)
delta = math.sqrt(np.sum((Z - np.mean(Z)) ** 2) / len(Z))
# Update inliers set
inliers = np.nonzero(Z < 0.8 * delta)[0]
inlier_pnts = self.point_data[inliers]
return len(inlier_pnts), inlier_pnts
def execute_ransac(self):
Time_start = time.time()
while math.ceil(self.items):
# 1.select N points at random
select_points = self.random_sampling(self.N)
# 2.fitting N ellipse points
ellipse = cv2.fitEllipse(select_points)
# 3.assess model and calculate inliers points
inliers_count, inliers_set = self.eval_model(ellipse)
# 4.number of new inliers points more than number of old inliers points ?
if inliers_count > self.count:
ellipse_ = cv2.fitEllipse(inliers_set) # fitting ellipse for inliers points
self.count = inliers_count # Update inliers set
self.best_model = ellipse_ # Update best ellipse
# 5.number of inliers points reach the expected value
if self.count > self.max_inliers:
print('the number of inliers: ', self.count)
break
# Update items
self.items = math.log(1 - self.P) / math.log(1 - pow(inliers_count/self.length, self.N))
return self.best_model
if __name__ == '__main__':
# 这个是根据我的工程实际问题写的寻找椭圆轮廓点,你们可以根据自己实际来该
# 1.find ellipse edge line
contours, hierarchy = cv2.findContours(img, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE)
# 2.Ransac fit ellipse param
points_data = np.reshape(contours, (-1, 2)) # ellipse edge points set
Ransac = RANSAC(data=points_data, threshold=1., P=.99, S=.9, N=5)
(X, Y), (LAxis, SAxis), Angle = Ransac.execute_ransac()
整篇Ransac拟合椭圆的代码我感觉其实还是有不少小问题的,毕竟我菜鸡,写不出啥好东西,大家可以参考参考编程思路我感觉就可以了,我感觉我这个编程思路应该问题不大
四、部分对ransac的改进论文
链接:https://pan.baidu.com/s/1_P3rQJhRHMTE8sFmqRsxRg
提取码:0lia