岭回归sklearn的API:from sklearn.linear_model import Ridge
通过调节模型中的参数alpha的值来调节正则化的力度,力度越大高次项的系数越小,逐渐趋近于0,但是不会等于0,alpha一般去0-1之间的小数,或者1-10之间的整数,可以通过网格搜索去寻找最优参数
from sklearn.datasets import load_boston from sklearn.linear_model import LinearRegression, SGDRegressor,Ridge from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.metrics import mean_squared_error # 回归方程性能评价均方误差API def boston_linear(): '''线性回归预测波士顿房价''' # 获取数据 bl = load_boston() # 分割训练集和测试集 x_train, x_test, y_train, y_test = train_test_split(bl.data, bl.target, test_size=0.25) # 进行标准化,特征值和目标值都需要进行标准化处理 # 特征值 std_x = StandardScaler() x_train = std_x.fit_transform(x_train) x_test = std_x.fit_transform(x_test) # 目标值,y_train.reshape(-1, 1)将一维数组转换成二维数组 std_y = StandardScaler() y_train = std_y.fit_transform(y_train.reshape(-1, 1)) y_test = std_y.fit_transform(y_test.reshape(-1, 1)) # 预测 # 最小二乘法求解结果 lr = LinearRegression() lr.fit(x_train, y_train) # 系数 print(lr.coef_) # 预测测试集的房子价格 lr_y_predict = std_y.inverse_transform(lr.predict(x_test)) print('最小二乘法测试集里面每个房子的价格', lr_y_predict) # 用均方误差对一个回归模型来进行评价,越小越好,mean_squared_error第一个参数是测试集的真实值,第二个参数数测试集的预测值 print('最小二乘法的均方误差:', mean_squared_error(std_y.inverse_transform(y_test), lr_y_predict)) # 梯度下降 sgd = SGDRegressor() sgd.fit(x_train, y_train) # 系数 print(sgd.coef_) # 预测测试集的房子价格 sgd_y_predict = std_y.inverse_transform(sgd.predict(x_test)) print('梯度下降测试集里面每个房子的价格', sgd_y_predict) # 用均方误差对一个回归模型来进行评价,越小越好,mean_squared_error第一个参数是测试集的真实值,第二个参数数测试集的预测值 print('梯度下降法的均方误差:', mean_squared_error(std_y.inverse_transform(y_test), sgd_y_predict)) # 岭回归进行房价预测,alpha正则化力度参数 rd = Ridge(alpha=1.0) rd.fit(x_train, y_train) # 系数 print(rd.coef_) # 预测测试集的房子价格 rd_y_predict = std_y.inverse_transform(rd.predict(x_test)) print('岭回归测试集里面每个房子的价格', rd_y_predict) # 用均方误差对一个回归模型来进行评价,越小越好,mean_squared_error第一个参数是测试集的真实值,第二个参数数测试集的预测值 print('岭回归的均方误差:', mean_squared_error(std_y.inverse_transform(y_test), rd_y_predict)) if __name__ == "__main__": boston_linear()