题意
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 13237 | Accepted: 4436 |
Description
Georgia and Bob decide to play a self-invented game. They draw a row of grids on paper, number the grids from left to right by 1, 2, 3, ..., and place N chessmen on different grids, as shown in the following figure for example:Georgia and Bob move the chessmen in turn. Every time a player will choose a chessman, and move it to the left without going over any other chessmen or across the left edge. The player can freely choose number of steps the chessman moves, with the constraint that the chessman must be moved at least ONE step and one grid can at most contains ONE single chessman. The player who cannot make a move loses the game.
Georgia always plays first since "Lady first". Suppose that Georgia and Bob both do their best in the game, i.e., if one of them knows a way to win the game, he or she will be able to carry it out.
Given the initial positions of the n chessmen, can you predict who will finally win the game?
Input
The first line of the input contains a single integer T (1 <= T <= 20), the number of test cases. Then T cases follow. Each test case contains two lines. The first line consists of one integer N (1 <= N <= 1000), indicating the number of chessmen. The second line contains N different integers P1, P2 ... Pn (1 <= Pi <= 10000), which are the initial positions of the n chessmen.Output
For each test case, prints a single line, "Georgia will win", if Georgia will win the game; "Bob will win", if Bob will win the game; otherwise 'Not sure'.Sample Input
2 3 1 2 3 8 1 5 6 7 9 12 14 17
Sample Output
Bob will win Georgia will win
Source
POJ Monthly--2004.07.18分析
参照ACM_devil的题解。
我们把棋子按位置升序排列后,从后往前把他们两两绑定成一对。如果总个数是奇数,就把最前面一个和边界(位置为0)绑定。 在同一对棋子中,如果对手移动前一个,你总能对后一个移动相同的步数,所以一对棋子的前一个和前一对棋子的后一个之间有多少个空位置对最终的结果是没有影响的。于是我们只需要考虑同一对的两个棋子之间有多少空位。我们把每一对两颗棋子的距离(空位数)视作一堆石子,在对手移动每对两颗棋子中靠右的那一颗时,移动几位就相当于取几个石子,与取石子游戏对应上了,各堆的石子取尽,就相当再也不能移动棋子了。
我们可能还会考虑一种情况,就是某个玩家故意破坏,使得问题无法转换为取石子,例如前一个人将某对中的前者左移,而当前玩家不将这对中的另一移动,则会导致本堆石子增多了,不符合nim。但是这种情况是不会出现的。因为赢家只要按照取石子进行即可获胜,而输家无法主动脱离取石子状态。如果输家想要让某堆石子增多,那么赢家只需要让该堆减少回原状,这样输家又要面临跟上一回合同样的局面。
时间复杂度\(O(n \log n)\)
代码
#include<iostream>
#include<algorithm>
#define rg register
#define il inline
#define co const
template<class T>il T read(){
rg T data=0,w=1;rg char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') w=-1;ch=getchar();}
while(isdigit(ch)) data=data*10+ch-'0',ch=getchar();
return data*w;
}
template<class T>il T read(rg T&x) {return x=read<T>();}
typedef long long ll;
co int N=1001;
int a[N];
void Georgia_and_Bob(){
int n=read<int>(),x=0;
for(int i=1;i<=n;++i) read(a[i]);
std::sort(a+1,a+n+1);
for(int i=n;i>0;i-=2) x^=a[i]-a[i-1]-1;
puts(x?"Georgia will win":"Bob will win");
}
int main(){
// freopen(".in","r",stdin),freopen(".out","w",stdout);
for(int t=read<int>();t--;) Georgia_and_Bob();
return 0;
}