A string of
'0'
s and'1'
s is monotone increasing if it consists of some number of'0'
s (possibly 0), followed by some number of'1'
s (also possibly 0.)We are given a string
S
of'0'
s and'1'
s, and we may flip any'0'
to a'1'
or a'1'
to a'0'
.Return the minimum number of flips to make
S
monotone increasing.
Example 1:
Input: "00110"
Output: 1
Explanation: We flip the last digit to get 00111.Example 2:
Input: "010110"
Output: 2
Explanation: We flip to get 011111, or alternatively 000111.Example 3:
Input: "00011000"
Output: 2
Explanation: We flip to get 00000000.
Note:
1 <= S.length <= 20000
S
only consists of'0'
and'1'
characters.
Approach #1: DP + Prefix + Suffix. [Java]
class Solution {
public int minFlipsMonoIncr(String S) {
int n = S.length();
int[] l = new int[n+1];
int[] r = new int[n+1];
l[0] = S.charAt(0) - '0';
r[n-1] = '1' - S.charAt(n-1);
for (int i = 1; i < n; ++i)
l[i] = l[i-1] + S.charAt(i) - '0';
for (int j = n-2; j >= 0; --j)
r[j] = r[j+1] + '1' - S.charAt(j);
int ret = r[0];
for (int i = 1; i <= n; ++i)
ret = Math.min(ret, l[i-1] + r[i]);
return ret;
}
}
Analysis:
l[i] = of min flips -> S[0] ~ S[i] all 0s.
r[i] = of min flips -> S[i] ~ S[n-1] all 1s.
ans = min{l[i-1] + r[i], l[n-1], r[0]}
l[i] = l[i-1] + s[i] == '1'
r[i] = r[i+1] + s[i] == '0'
Time complexity: O(n)
Space complexity: O(n)
Approach #2: DP. [C++]
class Solution {
public:
int minFlipsMonoIncr(string S) {
int n = S.length();
vector<vector<int>> dp(n+1, vector<int>(2, 0));
for (int i = 1; i <= n; ++i) {
if (S[i-1] == '0') {
dp[i][0] = dp[i-1][0];
dp[i][1] = min(dp[i-1][0], dp[i-1][1]) + 1;
} else {
dp[i][0] = dp[i-1][0] + 1;
dp[i][1] = min(dp[i-1][0], dp[i-1][1]);
}
}
return min(dp[n][0], dp[n][1]);
}
};
Analysis:
dp[i][0] = ans of S[0, i-1] and S[i] == '0'.
d[i][1] = ans of S[0, i-1] and S[i] == '1'.
if S[i] == '0':
dp[i][0] = dp[i-1][0];
dp[i][1] = min(dp[i-1][0], dp[i-1][1]) + 1;
else:
dp[i][0] = dp[i-1][0];
dp[i][1] = min(dp[i-1][0], dp[i-1][1])
Reference:
https://zxi.mytechroad.com/blog/dynamic-programming/leetcode-926-flip-string-to-monotone-increasing/