agda学习笔记---等式
可以开始证明之前用到的好多东西了
这是训练与emacs互动的好机会(
sym : ∀ {A : Set} {x y : A} → x ≡ y → y ≡ x sym refl = refl trans : ∀ {A : Set} {x y z : A} → x ≡ y → y ≡ z → x ≡ z trans refl refl = refl cong : ∀ {A B : Set} (f : A → B) {x y : A} → x ≡ y → f x ≡ f y cong f refl = refl cong-app : ∀ {A B : Set} {f g : A → B} → f ≡ g → ∀ (x : A) → f x ≡ g x cong-app refl x = refl