“Xavier”初始化方法是一种很有效的神经网络初始化方法,方法来源于2010年的一篇论文《Understanding the difficulty of training deep feedforward neural networks》,可惜直到近两年,这个方法才逐渐得到更多人的应用和认可。
为了使得网络中信息更好的流动,每一层输出的方差应该尽量相等。
基于这个目标,现在我们就去推导一下:每一层的权重应该满足哪种条件。
文章先假设的是线性激活函数,而且满足0点处导数为1,即
现在我们先来分析一层卷积:
其中ni表示输入个数。
根据概率统计知识我们有下面的方差公式:
特别的,当我们假设输入和权重都是0均值时(目前有了BN之后,这一点也较容易满足),上式可以简化为:
进一步假设输入x和权重w独立同分布,则有:
于是,为了保证输入与输出方差一致,则应该有:
对于一个多层的网络,某一层的方差可以用累积的形式表达:
特别的,反向传播计算梯度时同样具有类似的形式:
综上,为了保证前向传播和反向传播时每一层的方差一致,应满足:
但是,实际当中输入与输出的个数往往不相等,于是为了均衡考量,最终我们的权重方差应满足:
学过概率统计的都知道 [a,b] 间的均匀分布的方差为:
因此,Xavier初始化的实现就是下面的均匀分布:
——————————————————————————————————————————
———————————————————————————————————————————
下面,我们来看一下caffe中具体是怎样实现的,代码位于include/caffe/filler.hpp文件中。
template <typename Dtype> class XavierFiller : public Filler<Dtype> { public: explicit XavierFiller(const FillerParameter& param) : Filler<Dtype>(param) {} virtual void Fill(Blob<Dtype>* blob) { CHECK(blob->count()); int fan_in = blob->count() / blob->num(); int fan_out = blob->count() / blob->channels(); Dtype n = fan_in; // default to fan_in if (this->filler_param_.variance_norm() == FillerParameter_VarianceNorm_AVERAGE) { n = (fan_in + fan_out) / Dtype(2); } else if (this->filler_param_.variance_norm() == FillerParameter_VarianceNorm_FAN_OUT) { n = fan_out; } Dtype scale = sqrt(Dtype(3) / n); caffe_rng_uniform<Dtype>(blob->count(), -scale, scale, blob->mutable_cpu_data()); CHECK_EQ(this->filler_param_.sparse(), -1) << "Sparsity not supported by this Filler."; } };
由上面可以看出,caffe的Xavier实现有三种选择
(1) 默认情况,方差只考虑输入个数:
(2) FillerParameter_VarianceNorm_FAN_OUT,方差只考虑输出个数:
(3) FillerParameter_VarianceNorm_AVERAGE,方差同时考虑输入和输出个数:
之所以默认只考虑输入,我个人觉得是因为前向信息的传播更重要一些
————————————————
版权声明:本文为CSDN博主「shuzfan」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/shuzfan/article/details/51338178