Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 21048 | Accepted: 14416 |
Description
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.
Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
Sample Input
0 9 999999999 1000000000 -1
Sample Output
0 34 626 6875
Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
.
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:
.
裸的快速矩阵幂 >>=1就是/=2 前几天做题目头脑没转过弯来 好气
讲解参考 https://www.cnblogs.com/cmmdc/p/6936196.html
1 #include <stdio.h> 2 #include <iostream> 3 #include <cstring> 4 #include <vector> 5 #include <queue> 6 #include <set> 7 #include <sstream> 8 #include <algorithm> 9 int N; 10 using namespace std; 11 const int si = 2, mod = 10000; 12 13 struct mat { 14 int m[si][si]; 15 }; 16 17 mat mul(mat A, mat B) { 18 mat tp; 19 for (int i = 0; i < si; i++) { 20 for (int j = 0; j < si; j++) { 21 tp.m[i][j] = 0; 22 } 23 } 24 for (int i = 0; i < si; i++) { 25 for (int j = 0; j < si; j++) { 26 for (int k = 0; k < si; k++) { 27 tp.m[i][j] += A.m[i][k] * B.m[k][j]; 28 tp.m[i][j] %= mod; 29 } 30 } 31 } 32 return tp; 33 } 34 mat pow (mat A, int e){ 35 mat tp; 36 for (int i = 0; i < si; i++) { 37 for (int j = 0; j < si; j++) { 38 if (i == j) tp.m[i][j] = 1; 39 else tp.m[i][j] = 0; 40 } 41 } 42 while (e) { 43 if (e & 1) { 44 tp = mul(tp, A); 45 } 46 A = mul(A, A); 47 e /= 2; 48 } 49 return tp; 50 } 51 int main() { 52 while (1) { 53 scanf("%d", &N); 54 if (N < 0) break; 55 if (N == 0) { 56 printf("%d\n", 0 % mod); 57 continue; 58 } 59 mat MA; 60 MA.m[0][0] = 1; MA.m[0][1] = 1; 61 MA.m[1][0] = 1; MA.m[1][1] = 0; 62 MA = pow(MA, N); 63 printf("%d\n", MA.m[1][0] % mod); 64 } 65 return 0; 66 }