大数据学习路线:Zookeeper集群管理与选举

大数据技术的学习,逐渐成为很多程序员的必修课,因为趋势也是因为自己的职业生涯。在各个技术社区分享交流成为很多人学习的方式,今天很荣幸给我们分享一些大数据基础知识,大家可以一起学习!

大数据学习路线:Zookeeper集群管理与选举

  1.集群机器监控

  这通常用于那种对集群中机器状态,机器在线率有较高要求的场景,能够快速对集群中机器变化作出响应。这样的场景中,往往有一个监控系统,实时检测集群机器是否存活。过去的做法通常是:监控系统通过某种手段(比如ping)定时检测每个机器,或者每个机器自己定时向监控系统汇报“我还活着”。 这种做法可行,但是存在两个比较明显的问题:

  集群中机器有变动的时候,牵连修改的东西比较多。

  有一定的延时。

  利用ZooKeeper有两个特性,就可以实时另一种集群机器存活性监控系统:

  客户端在节点 x 上注册一个Watcher,那么如果 x?的子节点变化了,会通知该客户端。

  创建EPHEMERAL类型的节点,一旦客户端和服务器的会话结束或过期,那么该节点就会消失。

  例如,监控系统在 /clusterServers 节点上注册一个Watcher,以后每动态加机器,那么就往 /clusterServers 下创建一个 EPHEMERAL类型的节点:/clusterServers/{hostname}. 这样,监控系统就能够实时知道机器的增减情况,至于后续处理就是监控系统的业务了。

  2.Master选举

  在分布式环境中,相同的业务应用分布在不同的机器上,有些业务逻辑(例如一些耗时的计算,网络I/O处理),往往只需要让整个集群中的某一台机器进行执行,其余机器可以共享这个结果,这样可以大大减少重复劳动,提高性能,于是这个master选举便是这种场景下的碰到的主要问题。

  利用ZooKeeper的强一致性,能够保证在分布式高并发情况下节点创建的全局唯一性,即:同时有多个客户端请求创建 /currentMaster 节点,终究一定只有一个客户端请求能够创建成功。利用这个特性,就能很轻易的在分布式环境中进行集群选取了。

  另外,这种场景演化一下,就是动态Master选举。这就要用到?EPHEMERAL_SEQUENTIAL类型节点的特性了。

  上文中提到,所有客户端创建请求,最终只有一个能够创建成功。在这里稍微变化下,就是允许所有请求都能够创建成功,但是得有个创建顺序,于是所有的请求最终在ZK上创建结果的一种可能情况是这样: /currentMaster/{sessionId}-1 ,?/currentMaster/{sessionId}-2 ,?/currentMaster/{sessionId}-3 ….. 每次选取序列号最小的那个机器作为Master,如果这个机器挂了,由于他创建的节点会马上小时,那么之后最小的那个机器就是Master了。

  3.搜索系统

  在搜索系统中,如果集群中每个机器都生成一份全量索引,不仅耗时,而且不能保证彼此之间索引数据一致。因此让集群中的Master来进行全量索引的生成,然后同步到集群中其它机器。另外,Master选举的容灾措施是,可以随时进行手动指定master,就是说应用在zk在无法获取master信息时,可以通过比如http方式,向一个地方获取master。

  在Hbase中,也是使用ZooKeeper来实现动态HMaster的选举。在Hbase实现中,会在ZK上存储一些ROOT表的地址和 HMaster的地址,HRegionServer也会把自己以临时节点(Ephemeral)的方式注册到Zookeeper中,使得HMaster可以随时感知到各个HRegionServer的存活状态,同时,一旦HMaster出现问题,会重新选举出一个HMaster来运行,从而避免了 HMaster的单点问题。

上一篇:POJ1201 Intervals差分约束系统(最短路)


下一篇:nginx启动或者重启失败,报错nginx: [error] open() "/usr/local/var/run/nginx.pid" failed (2: No such file or directory)