POJ 1637 Sightseeing tour ★混合图欧拉回路

【题目大意】混合图欧拉回路(1 <= N <= 200, 1 <= M <= 1000)

【建模方法】

把该图的无向边随便定向,计算每个点的入度和出度。如果有某个点出入度之差为奇数,那么肯定不存在欧拉回路。因为欧拉回路要求每点入度 = 出度,也就是总度数为偶数,存在奇数度点必不能有欧拉回路。
好了,现在每个点入度和出度之差均为偶数。那么将这个偶数除以2,得x。也就是说,对于每一个点,只要将x条边改变方向(入>出就是变入,出>入就是变出),就能保证出=入。如果每个点都是出=入,那么很明显,该图就存在欧拉回路。
现在的问题就变成了:我该改变哪些边,可以让每个点出=入?构造网络流模型。首先,有向边是不能改变方向的,要之无用,删。一开始不是把无向边定向了吗?定的是什么向,就把网络构建成什么样,边长容量上限1。另新建s和t。对于入>出的点u,连接边(u, t)、容量为x,对于出>入的点v,连接边(s, v),容量为x(注意对不同的点x不同)。之后,察看是否有满流(最大流=从源点出去的流量)的分配。有就是能有欧拉回路,没有就是没有。欧拉回路是哪个?察看流值分配,将所有流量非 0(上限是1,流值不是0就是1)的边反向,就能得到每点入度=出度的欧拉图。
由于是满流,所以每个入>出的点,都有x条边进来,将这些进来的边反向,OK,入=出了。对于出>入的点亦然。那么,没和s、t连接的点怎么办?和s连接的条件是出>入,和t连接的条件是入>出,那么这个既没和s也没和t连接的点,自然早在开始就已经满足入=出了。那么在网络流过程中,这些点属于“中间点”。我们知道中间点流量不允许有累积的,这样,进去多少就出来多少,反向之后,自然仍保持平衡。
所以,就这样,混合图欧拉回路问题,解了。

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define MID(x,y) ((x+y)/2)
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
const int MAXV = 305;
const int MAXE = 10005;
struct node{
int u, v, flow;
int opp;
int next;
};
struct Dinic{
node arc[MAXE];
int vn, en, head[MAXV]; //vn点个数(包括源点汇点),en边个数
int cur[MAXV]; //当前弧
int q[MAXV]; //bfs建层次图时的队列
int path[MAXE], top; //存dfs当前最短路径的栈
int dep[MAXV]; //各节点层次
void init(int n){
vn = n;
en = 0;
mem(head, -1);
}
void insert_flow(int u, int v, int flow){
arc[en].u = u;
arc[en].v = v;
arc[en].flow = flow;
arc[en].opp = en + 1;
arc[en].next = head[u];
head[u] = en ++; arc[en].u = v;
arc[en].v = u;
arc[en].flow = 0; //反向弧
arc[en].opp = en - 1;
arc[en].next = head[v];
head[v] = en ++;
}
bool bfs(int s, int t){
mem(dep, -1);
int lq = 0, rq = 1;
dep[s] = 0;
q[lq] = s;
while(lq 0){
dep[v] = dep[u] + 1;
q[rq ++] = v;
}
}
}
return false;
}
int solve(int s, int t){
int maxflow = 0;
while(bfs(s, t)){
int i, j;
for (i = 1; i arc[path[k]].flow){
minflow = arc[path[k]].flow;
mink = k;
}
for (int k = 0; k outdeg[i]){
dinic.insert_flow(i, n+2, x/2);
sum += x/2;
}
else{
dinic.insert_flow(n+1, i, x/2);
}
}
if (!ok){
puts("impossible");
continue;
}
if (dinic.solve(n+1, n+2) == sum){
puts("possible");
}
else{
puts("impossible");
}
}
return 0;
}
上一篇:Day2 数据类型和运算符


下一篇:POJ 1637 混合图欧拉回路