BFS(二):数的变换

【例1】整数变换(POJ 3278 “Catch That Cow”)

      给定两个整数a和b(0 ≤a,b≤100,000),要求把a变换到b。变换规则为:(1)当前数加1;(2)当前数减1;(3)当前数加倍。

      编写程序求从a到b最少需要的变换次数。

      例如,从5变换到17,最少需要4歩,具体过程为:5-10-9-18-17。

      (1)编程思路。

      用数组que[100001]模拟队列,队头指针front和队尾指针rear的初始值均为0。

      定义数组visit[100001]标记某数是否产生并记录该数产生所需的最少变换步数。初始时,所有元素值均为-1,visit[i]=-1表示整数i未变换出来,visit[i]=n表示整数i从初始数开始经过n次变换得到。

      为体会visit数组的作用,我们以整数5开始变换为例说明。由于5是初始数,所以置visit[5]=0。

      由于按3种变换规则,5可以变换为4,6和10,因此置visit[4]=visit[6]=visit[10]=visit[5]+1=1,即4、6和10这3个数通过1次变换得到;4可以变换为3、5(visit[5]!=-1,已访问过不再处理)和8,因此置visit[3]=visit[8]=visit[4]+1=2,即3和8可以通过2次变换得到。……

      (2)源程序。

#include <iostream>  

using namespace std;   

int main()  

{  

    int a, b,front,rear,t,i;  

    int que[100001]={0},visit[100001];  

    cin>>a>>b;  

    for (i=0;i<=100000;i++)

          visit[i]=-1;

    front = 0, rear = 0;  

    que[rear++] = a;     // 初始元素a 入队

    visit[a] = 0;  

    while (front != rear)  

    {  

        t = que[front++];  

        if (t == b)  

        {  

            cout<<visit[t]<<endl;  

            break;

        }  

        if (t > 0 && visit[t-1]==-1)  

        {  

            visit[t-1] = visit[t]+1;  

            que[rear++] = t-1;  

        }  

        if (t < 100000 && visit[t+1]==-1)  

        {  

            visit[t+1] = visit[t]+1;  

            que[rear++] = t+1;  

        }  

        if (t <= 50000 && visit[t*2]==-1)  

        {  

            visit[t*2] = visit[t]+1;  

            que[rear++] = t*2;  

        }  

    }

    return 0;  

}

 

【例2】质数变换(POJ 3126 “Prime Path”)

      给定两个四位质数a和b,要求把a变换到b。变换的过程要求:(1)每次变换出来的数都是一个四位质数;(2)每一步变换所得的质数与前一步得到的质数只能有一个位不同。

      编写程序求从a到b最少需要的变换次数,无法变换则输出Impossible。

      例如,从1033变换到8179最少需要6歩,具体变换过程为1033、1733、3733、3739、3779、8779、8179。

      (1)编程思路。

      定义数组char prime[10000];来进行质数的判断,prime[x]=‘1’表示整数x是质数,prime[x]=‘0’表示整数x不是质数。采用筛法构建质数判定表prime[10000]。 

      在整数x进行变换时,可分别对x的千位、百位、十位和个位进行 (可用循环for (i=0;i<4;i++) 处理),每位上可由0~9这10种选择(可用循环 for (j=0;j<10;j++)处理)。即数的变换可以采用一个二重循环处理。若变换出的整数num如果是一个4位数(num>=1000),且没有访问过(visit[num]=-1),还是质数(prime[num]='1'),则将产生的整数num入队。

      (2)源程序及运行结果。

#include <iostream> 

using namespace std;

char prime[10000];

void GetPrime()              // 用筛法构建质数判定表 

{

      int i,j;

      for (i=2;i<10000;i++)

              prime[i]='1';

       for(i=2;i<10000;i++)    

       {

             if (prime[i]=='1')

                     for (j=2*i;j<10000;j+=i)

                            prime[j]='0';

         }

        prime[1]='0'; 

}

void BFS(int k,int m)

{

    int visit[10000],que[10000],a[4]={1,10,100,1000};

    int front,rear,i,j,s,x,y,num;

    for (i=1000;i<10000;i++)

              visit[i]=-1;

    front=rear=0;

    que[rear++]=k;              // k入队  

    visit[k]=0;

    while(front!=rear)

    {

           s=que[front++];         // 队头元素出队

           if (s==m)

           {

                     cout<<visit[s]<<endl;

                     return;

           }

           for (i=0;i<4;i++)

          { 

              for (j=0;j<10;j++)

              {

              x=s/(a[i]*10);     

              y=s%a[i];

              num=x*a[i]*10+j*a[i]+y;

              if (num>1000 && visit[num]==-1 && prime[num]=='1')  

                       {   

                 que[rear++]=num;     // 变换后的质数入队

                 visit[num]=visit[s]+1;

                       }

                  }

              }

       }

    cout<<"Impossible"<<endl;

}

int main()

{  

    int n,k,m;

    GetPrime();

    cin>>n; 

    while (n--) 

    { 

        cin>>k>>m; 

        BFS(k,m); 

    } 

    return 0;

}

上一篇:算法分析——走迷宫问题


下一篇:递归(三):排列