题目链接:http://poj.org/problem?id=2977
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 2229 | Accepted: 598 |
Description
You are given a three-dimensional box of integral dimensions lx × ly × lz The edges of the box are axis-aligned, and one corner of the box is located at position (0, 0, 0). Given the coordinates (x, y, z) of some arbitrary position on the surface of the box, your goal is to return the square of the length of the shortest path along the box’s surface from (0, 0, 0) to (x, y, z).
If lx = 1, ly = 2, and lz = 1, then the shortest path from (0, 0, 0) to (1, 2, 1) is found by walking from (0, 0, 0) to (1, 1, 0), followed by walking from (1, 1, 0) to (1, 2, 1). The total path length is √8.
Input
The input test file will contain multiple test cases, each of which consists of six integers lx, ly, lz, x, y, z where 1 ≤ lx, ly, lz ≤ 1000. Note that the box may have zero volume, but the point (x, y, z) is always guaranteed to be on one of the six sides of the box. The end-of-file is marked by a test case with lx = ly = lz = x = y = z = 0 and should not be processed.
Output
For each test case, write a single line with a positive integer indicating the square of the shortest path length. (Note: The square of the path length is always an integer; thus, your answer is exact, not approximate.)
Sample Input
1 1 2 1 1 2
1 1 1 1 1 1
0 0 0 0 0 0
Sample Output
8
5 如果你觉得这是一道很简单的题然后你WA的话
可以看下面我画的这张图
唉我画图真的画的太好了哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈(无限得意中
下面放代码
#include<stdio.h>
#include<iostream>
#include<math.h>
#include<algorithm>
#include<string.h>
#include<limits.h>
using namespace std;
int a(int x)
{
return x*x;
}
int main()
{
int lx,ly,lz,x,y,z;
int res;
while(cin>>lx>>ly>>lz>>x>>y>>z)
{
if(lx==&&ly==&&lz==&&x==&&y==&&z==)
break;
res=INT_MAX;
if(x==||y==||z==)//相邻面上
res=x*x+y*y+z*z;
else if(z==lz)//上面
{
res=min(min(a(x)+a(lz+y),a(y)+a(lz+x)),res);
res=min(res,min(a(y+lx)+a(lx+lz-x),a(x+ly)+a(ly+lz-y)));
}
else if(y==ly)//后面
{
res=min(min(a(x)+a(z+ly),a(z)+a(ly+x)),res);
res=min(res,min(a(x+lz)+a(ly+lz-z),a(z+lx)+a(ly+lx-x)));
}
else if(x==lx)//右面
{
res=min(min(a(z)+a(lx+y),a(y)+a(z+lx)),res);
res=min(res,min(a(lz+y)+a(lx+lz-z),a(z+ly)+a(ly+lx-y)));
}
cout<<res<<endl;
}
return ;
}