参考资料:python 连接oracle -- sqlalchemy及cx_Oracle的使用详解
oracle指定表缺失值统计 -- 基于cx_Oracle
import pandas as pd
import cx_Oracle as orcl # 批量查询数据缺失率
def missing_count(table_name, where_condition={}, **engine):
#where 条件参数化, str或dict
sql_tab_columns = "select column_name from user_tab_columns \
where table_name = '{}'".format(table_name) db = ConnectOracle(**engine)
#sql_select.encode('utf-8')
columns = db.select_oracle(sql=sql_tab_columns) #生成select语句
ss = ''
for col in columns.COLUMN_NAME:
ss += 'sum(decode({},null, 1, 0)) as {}, '.format(col, col)
ss = ss[:-2] #生成where条件
wh = ''
if where_condition:
wh += ' where '
if type(where_condition)==str:
wh += where_condition
if type(where_condition)==dict:
for key in where_condition.keys():
if type(where_condition[key])!=str:
wh += ('t.' + str(key) + ' = ' +
str(where_condition[key]) + ' and ')
else:
wh += ("t." + str(key) + " = '" +
str(where_condition[key]) + "' and ")
wh = wh[:-4] #print(ss)
sql_select = '''select count(*) as counts, {}
from {} t {}
'''.format(ss, table_name, wh) #print(sql_select)
res = db.select_oracle(sql=sql_select)
return pd.Series(res.values.tolist()[0], index=res.columns)
缺失值统计2 -- 基于sqlalchemy
import pandas as pd
#import cx_Oracle as orcl
from sqlalchemy import create_engine # 批量查询数据缺失率
def missing_count(table_name, where_condition={}, **config):
#where 条件参数化, str或dict #定义数据库连接
#'oracle://qmcbrt:qmcbrt@10.85.31.20:1521/tqmcbdb'
engine = 'oracle://{username}:{passwd}@{host}:{port}/{sid}'.format(**config) #dbname -- 各版本语法不同
db = create_engine(engine)
#pd.read_sql_query(sql_tab_columns, db)
#db.execute('truncate table {}'.format(ttb)) #查询列名 -- 用于生成select项
sql_tab_columns = "select column_name from user_tab_columns where table_name = '{}'".format(table_name)
columns = pd.read_sql_query(sql_tab_columns, db) #生成select项
ss = ''
for col in columns.column_name:
ss += 'sum(decode({}, null, 1, 0)) as {}, '.format(col, col)
ss = ss[:-2] #生成where条件
wh = ''
if where_condition:
wh += ' where '
if type(where_condition)==str:
wh += where_condition
if type(where_condition)==dict:
for key in where_condition.keys():
if type(where_condition[key])!=str:
wh += ('t.' + str(key) + ' = ' +
str(where_condition[key]) + ' and ')
else:
wh += ("t." + str(key) + " = '" +
str(where_condition[key]) + "' and ")
wh = wh[:-4] #select语句
sql_select = '''select count(*) as counts, {} from {} t {} '''.format(ss, table_name, wh) #pd.Series(res.values.tolist()[0], index=res.columns)
res = pd.read_sql_query(sql_select, db)
return res.iloc[0,:]
示例
config = {
'username':'qmcb',
'passwd':'qmcb',
'host':'localhost',
'port':'1521',
'sid':'tqmcbdb'
}
where_condition = {
'is_normal': 1,
'is_below_16': 0,
'is_xs': 0,
'is_cj': 0,
'is_dead': 0,
'AAE138_is_not_null': 0,
'is_dc': 0,
'is_px': 0
}
# 计算 QMCB_KM_2019_1_31_1 表的数据缺失数
missing_count('QMCB_KM_2019_1_31_1', where_condition, **config)