u-boot dm驱动模型-udevice和driver

设备

/* SPDX-License-Identifier: GPL-2.0+ */ /*  * Copyright (c) 2013 Google, Inc  *  * (C) Copyright 2012  * Pavel Herrmann <morpheus.ibis@gmail.com>  * Marek Vasut <marex@denx.de>  */
#ifndef _DM_DEVICE_H #define _DM_DEVICE_H
#include <dm/ofnode.h> #include <dm/uclass-id.h> #include <fdtdec.h> #include <linker_lists.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/printk.h>
struct driver_info;
/* Driver is active (probed). Cleared when it is removed */ #define DM_FLAG_ACTIVATED       (1 << 0)
/* DM is responsible for allocating and freeing plat */ #define DM_FLAG_ALLOC_PDATA     (1 << 1)
/* DM should init this device prior to relocation */ #define DM_FLAG_PRE_RELOC       (1 << 2)
/* DM is responsible for allocating and freeing parent_plat */ #define DM_FLAG_ALLOC_PARENT_PDATA  (1 << 3)
/* DM is responsible for allocating and freeing uclass_plat */ #define DM_FLAG_ALLOC_UCLASS_PDATA  (1 << 4)
/* Allocate driver private data on a DMA boundary */ #define DM_FLAG_ALLOC_PRIV_DMA      (1 << 5)
/* Device is bound */ #define DM_FLAG_BOUND           (1 << 6)
/* Device name is allocated and should be freed on unbind() */ #define DM_FLAG_NAME_ALLOCED        (1 << 7)
/* Device has platform data provided by of-platdata */ #define DM_FLAG_OF_PLATDATA     (1 << 8)
/*  * Call driver remove function to stop currently active DMA transfers or  * give DMA buffers back to the HW / controller. This may be needed for  * some drivers to do some final stage cleanup before the OS is called  * (U-Boot exit)  */ #define DM_FLAG_ACTIVE_DMA      (1 << 9)
/*  * Call driver remove function to do some final configuration, before  * U-Boot exits and the OS is started  */ #define DM_FLAG_OS_PREPARE      (1 << 10)
/* DM does not enable/disable the power domains corresponding to this device */ #define DM_FLAG_DEFAULT_PD_CTRL_OFF (1 << 11)
/* Driver plat has been read. Cleared when the device is removed */ #define DM_FLAG_PLATDATA_VALID      (1 << 12)
/*  * Device is removed without switching off its power domain. This might  * be required, i. e. for serial console (debug) output when booting OS.  */ #define DM_FLAG_LEAVE_PD_ON     (1 << 13)
/*  * Device is vital to the operation of other devices. It is possible to remove  * removed this device after all regular devices are removed. This is useful  * e.g. for clock, which need to be active during the device-removal phase.  */ #define DM_FLAG_VITAL           (1 << 14)
/*  * One or multiple of these flags are passed to device_remove() so that  * a selective device removal as specified by the remove-stage and the  * driver flags can be done.  *  * DO NOT use these flags in your driver's @flags value...  *  use the above DM_FLAG_... values instead  */ enum {     /* Normal remove, remove all devices */     DM_REMOVE_NORMAL    = 1 << 0,
    /* Remove devices with active DMA */     DM_REMOVE_ACTIVE_DMA    = DM_FLAG_ACTIVE_DMA,
    /* Remove devices which need some final OS preparation steps */     DM_REMOVE_OS_PREPARE    = DM_FLAG_OS_PREPARE,
    /* Remove only devices that are not marked vital */     DM_REMOVE_NON_VITAL = DM_FLAG_VITAL,
    /* Remove devices with any active flag */     DM_REMOVE_ACTIVE_ALL    = DM_REMOVE_ACTIVE_DMA | DM_REMOVE_OS_PREPARE,
    /* Don't power down any attached power domains */     DM_REMOVE_NO_PD     = 1 << 1, };
/**  * struct udevice - An instance of a driver  *  * This holds information about a device, which is a driver bound to a  * particular port or peripheral (essentially a driver instance).  *  * A device will come into existence through a 'bind' call, either due to  * a U_BOOT_DRVINFO() macro (in which case plat is non-NULL) or a node  * in the device tree (in which case of_offset is >= 0). In the latter case  * we translate the device tree information into plat in a function  * implemented by the driver of_to_plat method (called just before the  * probe method if the device has a device tree node.  *  * All three of plat, priv and uclass_priv can be allocated by the  * driver, or you can use the auto members of struct driver and  * struct uclass_driver to have driver model do this automatically.  *  * @driver: The driver used by this device  * @name: Name of device, typically the FDT node name  * @plat_: Configuration data for this device (do not access outside driver  *  model)  * @parent_plat_: The parent bus's configuration data for this device (do not  *  access outside driver model)  * @uclass_plat_: The uclass's configuration data for this device (do not access  *  outside driver model)  * @driver_data: Driver data word for the entry that matched this device with  *      its driver  * @parent: Parent of this device, or NULL for the top level device  * @priv_: Private data for this device (do not access outside driver model)  * @uclass: Pointer to uclass for this device  * @uclass_priv_: The uclass's private data for this device (do not access  *  outside driver model)  * @parent_priv_: The parent's private data for this device (do not access  *  outside driver model)  * @uclass_node: Used by uclass to link its devices  * @child_head: List of children of this device  * @sibling_node: Next device in list of all devices  * @flags_: Flags for this device DM_FLAG_... (do not access outside driver  *  model)  * @seq_: Allocated sequence number for this device (-1 = none). This is set up  * when the device is bound and is unique within the device's uclass. If the  * device has an alias in the devicetree then that is used to set the sequence  * number. Otherwise, the next available number is used. Sequence numbers are  * used by certain commands that need device to be numbered (e.g. 'mmc dev').  * (do not access outside driver model)  * @node_: Reference to device tree node for this device (do not access outside  *  driver model)  * @devres_head: List of memory allocations associated with this device.  *      When CONFIG_DEVRES is enabled, devm_kmalloc() and friends will  *      add to this list. Memory so-allocated will be freed  *      automatically when the device is removed / unbound  * @dma_offset: Offset between the physical address space (CPU's) and the  *      device's bus address space  */ struct udevice {     const struct driver *driver;     const char *name;     void *plat_;     void *parent_plat_;     void *uclass_plat_;     ulong driver_data;     struct udevice *parent;     void *priv_;     struct uclass *uclass;     void *uclass_priv_;     void *parent_priv_;     struct list_head uclass_node;     struct list_head child_head;     struct list_head sibling_node; #if !CONFIG_IS_ENABLED(OF_PLATDATA_RT)     u32 flags_; #endif     int seq_; #if !CONFIG_IS_ENABLED(OF_PLATDATA)     ofnode node_; #endif #ifdef CONFIG_DEVRES     struct list_head devres_head; #endif #if CONFIG_IS_ENABLED(DM_DMA)     ulong dma_offset; #endif };
/**  * udevice_rt - runtime information set up by U-Boot  *  * This is only used with OF_PLATDATA_RT  *  * There is one of these for every udevice in the linker list, indexed by  * the udevice_info idx value.  *  * @flags_: Flags for this device DM_FLAG_... (do not access outside driver  *  model)  */ struct udevice_rt {     u32 flags_; };
/* Maximum sequence number supported and associated string length */ #define DM_MAX_SEQ  999 #define DM_MAX_SEQ_STR  3
/* Returns the operations for a device */ #define device_get_ops(dev) (dev->driver->ops)
#if CONFIG_IS_ENABLED(OF_PLATDATA_RT) u32 dev_get_flags(const struct udevice *dev); void dev_or_flags(const struct udevice *dev, u32 or); void dev_bic_flags(const struct udevice *dev, u32 bic); #else static inline u32 dev_get_flags(const struct udevice *dev) {     return dev->flags_; }
static inline void dev_or_flags(struct udevice *dev, u32 or) {     dev->flags_ |= or; }
static inline void dev_bic_flags(struct udevice *dev, u32 bic) {     dev->flags_ &= ~bic; } #endif /* OF_PLATDATA_RT */
/**  * dev_ofnode() - get the DT node reference associated with a udevice  *  * @dev:    device to check  * @return reference of the the device's DT node  */ static inline ofnode dev_ofnode(const struct udevice *dev) { #if !CONFIG_IS_ENABLED(OF_PLATDATA)     return dev->node_; #else     return ofnode_null(); #endif }
/* Returns non-zero if the device is active (probed and not removed) */ #define device_active(dev)  (dev_get_flags(dev) & DM_FLAG_ACTIVATED)
#if CONFIG_IS_ENABLED(DM_DMA) #define dev_set_dma_offset(_dev, _offset)   _dev->dma_offset = _offset #define dev_get_dma_offset(_dev)        _dev->dma_offset #else #define dev_set_dma_offset(_dev, _offset) #define dev_get_dma_offset(_dev)        0 #endif
static inline int dev_of_offset(const struct udevice *dev) { #if !CONFIG_IS_ENABLED(OF_PLATDATA)     return ofnode_to_offset(dev_ofnode(dev)); #else     return -1; #endif }
static inline bool dev_has_ofnode(const struct udevice *dev) { #if !CONFIG_IS_ENABLED(OF_PLATDATA)     return ofnode_valid(dev_ofnode(dev)); #else     return false; #endif }
static inline void dev_set_ofnode(struct udevice *dev, ofnode node) { #if !CONFIG_IS_ENABLED(OF_PLATDATA)     dev->node_ = node; #endif }
static inline int dev_seq(const struct udevice *dev) {     return dev->seq_; }
/**  * struct udevice_id - Lists the compatible strings supported by a driver  * @compatible: Compatible string  * @data: Data for this compatible string  */ struct udevice_id {     const char *compatible;     ulong data; };
#if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA) #define of_match_ptr(_ptr)  (_ptr) #else #define of_match_ptr(_ptr)  NULL #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
/**  * struct driver - A driver for a feature or peripheral  *  * This holds methods for setting up a new device, and also removing it.  * The device needs information to set itself up - this is provided either  * by plat or a device tree node (which we find by looking up  * matching compatible strings with of_match).  *  * Drivers all belong to a uclass, representing a class of devices of the  * same type. Common elements of the drivers can be implemented in the uclass,  * or the uclass can provide a consistent interface to the drivers within  * it.  *  * @name: Device name  * @id: Identifies the uclass we belong to  * @of_match: List of compatible strings to match, and any identifying data  * for each.  * @bind: Called to bind a device to its driver  * @probe: Called to probe a device, i.e. activate it  * @remove: Called to remove a device, i.e. de-activate it  * @unbind: Called to unbind a device from its driver  * @of_to_plat: Called before probe to decode device tree data  * @child_post_bind: Called after a new child has been bound  * @child_pre_probe: Called before a child device is probed. The device has  * memory allocated but it has not yet been probed.  * @child_post_remove: Called after a child device is removed. The device  * has memory allocated but its device_remove() method has been called.  * @priv_auto: If non-zero this is the size of the private data  * to be allocated in the device's ->priv pointer. If zero, then the driver  * is responsible for allocating any data required.  * @plat_auto: If non-zero this is the size of the  * platform data to be allocated in the device's ->plat pointer.  * This is typically only useful for device-tree-aware drivers (those with  * an of_match), since drivers which use plat will have the data  * provided in the U_BOOT_DRVINFO() instantiation.  * @per_child_auto: Each device can hold private data owned by  * its parent. If required this will be automatically allocated if this  * value is non-zero.  * @per_child_plat_auto: A bus likes to store information about  * its children. If non-zero this is the size of this data, to be allocated  * in the child's parent_plat pointer.  * @ops: Driver-specific operations. This is typically a list of function  * pointers defined by the driver, to implement driver functions required by  * the uclass.  * @flags: driver flags - see DM_FLAGS_...  * @acpi_ops: Advanced Configuration and Power Interface (ACPI) operations,  * allowing the device to add things to the ACPI tables passed to Linux  */ struct driver {     char *name;     enum uclass_id id;     const struct udevice_id *of_match;     int (*bind)(struct udevice *dev);     int (*probe)(struct udevice *dev);     int (*remove)(struct udevice *dev);     int (*unbind)(struct udevice *dev);     int (*of_to_plat)(struct udevice *dev);     int (*child_post_bind)(struct udevice *dev);     int (*child_pre_probe)(struct udevice *dev);     int (*child_post_remove)(struct udevice *dev);     int priv_auto;     int plat_auto;     int per_child_auto;     int per_child_plat_auto;     const void *ops;    /* driver-specific operations */     uint32_t flags; #if CONFIG_IS_ENABLED(ACPIGEN)     struct acpi_ops *acpi_ops; #endif };
/* Declare a new U-Boot driver */ #define U_BOOT_DRIVER(__name)                       \     ll_entry_declare(struct driver, __name, driver)
/* Get a pointer to a given driver */ #define DM_DRIVER_GET(__name)                       \     ll_entry_get(struct driver, __name, driver)
/**  * DM_DRIVER_REF() - Get a reference to a driver  *  * This is useful in data structures and code for referencing a driver at  * build time. Before this is used, an extern U_BOOT_DRIVER() must have been  * declared.  *  * For example:  *  * extern U_BOOT_DRIVER(sandbox_fixed_clock);  *  * struct driver *drvs[] = {  *  DM_DRIVER_REF(sandbox_fixed_clock),  * };  *  * @_name: Name of the driver. This must be a valid C identifier, used by the  *  linker_list  * @returns struct driver * for the driver  */ #define DM_DRIVER_REF(_name)                    \     ll_entry_ref(struct driver, _name, driver)
/**  * Declare a macro to state a alias for a driver name. This macro will  * produce no code but its information will be parsed by tools like  * dtoc  */ #define DM_DRIVER_ALIAS(__name, __alias)
/**  * Declare a macro to indicate which phase of U-Boot this driver is fore.  *  *  * This macro produces no code but its information will be parsed by dtoc. The  * macro can be only be used once in a driver. Put it within the U_BOOT_DRIVER()  * declaration, e.g.:  *  * U_BOOT_DRIVER(cpu) = {  *  .name = ...  *  ...  *  DM_PHASE(tpl)  * };  */ #define DM_PHASE(_phase)
/**  * Declare a macro to declare a header needed for a driver. Often the correct  * header can be found automatically, but only for struct declarations. For  * enums and #defines used in the driver declaration and declared in a different  * header from the structs, this macro must be used.  *  * This macro produces no code but its information will be parsed by dtoc. The  * macro can be used multiple times with different headers, for the same driver.  * Put it within the U_BOOT_DRIVER() declaration, e.g.:  *  * U_BOOT_DRIVER(cpu) = {  *  .name = ...  *  ...  *  DM_HEADER(<asm/cpu.h>)  * };  */ #define DM_HEADER(_hdr)
/**  * dev_get_plat() - Get the platform data for a device  *  * This checks that dev is not NULL, but no other checks for now  *  * @dev     Device to check  * @return platform data, or NULL if none  */ void *dev_get_plat(const struct udevice *dev);
/**  * dev_get_parent_plat() - Get the parent platform data for a device  *  * This checks that dev is not NULL, but no other checks for now  *  * @dev     Device to check  * @return parent's platform data, or NULL if none  */ void *dev_get_parent_plat(const struct udevice *dev);
/**  * dev_get_uclass_plat() - Get the uclass platform data for a device  *  * This checks that dev is not NULL, but no other checks for now  *  * @dev     Device to check  * @return uclass's platform data, or NULL if none  */ void *dev_get_uclass_plat(const struct udevice *dev);
/**  * dev_get_priv() - Get the private data for a device  *  * This checks that dev is not NULL, but no other checks for now  *  * @dev     Device to check  * @return private data, or NULL if none  */ void *dev_get_priv(const struct udevice *dev);
/**  * dev_get_parent_priv() - Get the parent private data for a device  *  * The parent private data is data stored in the device but owned by the  * parent. For example, a USB device may have parent data which contains  * information about how to talk to the device over USB.  *  * This checks that dev is not NULL, but no other checks for now  *  * @dev     Device to check  * @return parent data, or NULL if none  */ void *dev_get_parent_priv(const struct udevice *dev);
/**  * dev_get_uclass_priv() - Get the private uclass data for a device  *  * This checks that dev is not NULL, but no other checks for now  *  * @dev     Device to check  * @return private uclass data for this device, or NULL if none  */ void *dev_get_uclass_priv(const struct udevice *dev);
/**  * struct dev_get_parent() - Get the parent of a device  *  * @child:  Child to check  * @return parent of child, or NULL if this is the root device  */ struct udevice *dev_get_parent(const struct udevice *child);
/**  * dev_get_driver_data() - get the driver data used to bind a device  *  * When a device is bound using a device tree node, it matches a  * particular compatible string in struct udevice_id. This function  * returns the associated data value for that compatible string. This is  * the 'data' field in struct udevice_id.  *  * As an example, consider this structure:  * static const struct udevice_id tegra_i2c_ids[] = {  *  { .compatible = "nvidia,tegra114-i2c", .data = TYPE_114 },  *  { .compatible = "nvidia,tegra20-i2c", .data = TYPE_STD },  *  { .compatible = "nvidia,tegra20-i2c-dvc", .data = TYPE_DVC },  *  { }  * };  *  * When driver model finds a driver for this it will store the 'data' value  * corresponding to the compatible string it matches. This function returns  * that value. This allows the driver to handle several variants of a device.  *  * For USB devices, this is the driver_info field in struct usb_device_id.  *  * @dev:    Device to check  * @return driver data (0 if none is provided)  */ ulong dev_get_driver_data(const struct udevice *dev);
/**  * dev_get_driver_ops() - get the device's driver's operations  *  * This checks that dev is not NULL, and returns the pointer to device's  * driver's operations.  *  * @dev:    Device to check  * @return void pointer to driver's operations or NULL for NULL-dev or NULL-ops  */ const void *dev_get_driver_ops(const struct udevice *dev);
/**  * device_get_uclass_id() - return the uclass ID of a device  *  * @dev:    Device to check  * @return uclass ID for the device  */ enum uclass_id device_get_uclass_id(const struct udevice *dev);
/**  * dev_get_uclass_name() - return the uclass name of a device  *  * This checks that dev is not NULL.  *  * @dev:    Device to check  * @return  pointer to the uclass name for the device  */ const char *dev_get_uclass_name(const struct udevice *dev);
/**  * device_get_child() - Get the child of a device by index  *  * Returns the numbered child, 0 being the first. This does not use  * sequence numbers, only the natural order.  *  * @dev:    Parent device to check  * @index:  Child index  * @devp:   Returns pointer to device  * @return 0 if OK, -ENODEV if no such device, other error if the device fails  *     to probe  */ int device_get_child(const struct udevice *parent, int index,              struct udevice **devp);
/**  * device_get_child_count() - Get the available child count of a device  *  * Returns the number of children to a device.  *  * @parent: Parent device to check  */ int device_get_child_count(const struct udevice *parent);
/**  * device_find_child_by_seq() - Find a child device based on a sequence  *  * This searches for a device with the given seq.  *  * @parent: Parent device  * @seq: Sequence number to find (0=first)  * @devp: Returns pointer to device (there is only one per for each seq).  * Set to NULL if none is found  * @return 0 if OK, -ENODEV if not found  */ int device_find_child_by_seq(const struct udevice *parent, int seq,                  struct udevice **devp);
/**  * device_get_child_by_seq() - Get a child device based on a sequence  *  * If an active device has this sequence it will be returned. If there is no  * such device then this will check for a device that is requesting this  * sequence.  *  * The device is probed to activate it ready for use.  *  * @parent: Parent device  * @seq: Sequence number to find (0=first)  * @devp: Returns pointer to device (there is only one per for each seq)  * Set to NULL if none is found  * @return 0 if OK, -ve on error  */ int device_get_child_by_seq(const struct udevice *parent, int seq,                 struct udevice **devp);
/**  * device_find_child_by_of_offset() - Find a child device based on FDT offset  *  * Locates a child device by its device tree offset.  *  * @parent: Parent device  * @of_offset: Device tree offset to find  * @devp: Returns pointer to device if found, otherwise this is set to NULL  * @return 0 if OK, -ve on error  */ int device_find_child_by_of_offset(const struct udevice *parent, int of_offset,                    struct udevice **devp);
/**  * device_get_child_by_of_offset() - Get a child device based on FDT offset  *  * Locates a child device by its device tree offset.  *  * The device is probed to activate it ready for use.  *  * @parent: Parent device  * @of_offset: Device tree offset to find  * @devp: Returns pointer to device if found, otherwise this is set to NULL  * @return 0 if OK, -ve on error  */ int device_get_child_by_of_offset(const struct udevice *parent, int of_offset,                   struct udevice **devp);
/**  * device_find_global_by_ofnode() - Get a device based on ofnode  *  * Locates a device by its device tree ofnode, searching globally throughout  * the all driver model devices.  *  * The device is NOT probed  *  * @node: Device tree ofnode to find  * @devp: Returns pointer to device if found, otherwise this is set to NULL  * @return 0 if OK, -ve on error  */
int device_find_global_by_ofnode(ofnode node, struct udevice **devp);
/**  * device_get_global_by_ofnode() - Get a device based on ofnode  *  * Locates a device by its device tree ofnode, searching globally throughout  * the all driver model devices.  *  * The device is probed to activate it ready for use.  *  * @node: Device tree ofnode to find  * @devp: Returns pointer to device if found, otherwise this is set to NULL  * @return 0 if OK, -ve on error  */ int device_get_global_by_ofnode(ofnode node, struct udevice **devp);
/**  * device_get_by_ofplat_idx() - Get a device based on of-platdata index  *  * Locates a device by either its struct driver_info index, or its  * struct udevice index. The latter is used with OF_PLATDATA_INST, since we have  * a list of build-time instantiated struct udevice records, The former is used  * with !OF_PLATDATA_INST since in that case we have a list of  * struct driver_info records.  *  * The index number is written into the idx field of struct phandle_1_arg, etc.  * It is the position of this driver_info/udevice in its linker list.  *  * The device is probed to activate it ready for use.  *  * @idx: Index number of the driver_info/udevice structure (0=first)  * @devp: Returns pointer to device if found, otherwise this is set to NULL  * @return 0 if OK, -ve on error  */ int device_get_by_ofplat_idx(uint idx, struct udevice **devp);
/**  * device_find_first_child() - Find the first child of a device  *  * @parent: Parent device to search  * @devp: Returns first child device, or NULL if none  * @return 0  */ int device_find_first_child(const struct udevice *parent,                 struct udevice **devp);
/**  * device_find_next_child() - Find the next child of a device  *  * @devp: Pointer to previous child device on entry. Returns pointer to next  *      child device, or NULL if none  * @return 0  */ int device_find_next_child(struct udevice **devp);
/**  * device_find_first_inactive_child() - Find the first inactive child  *  * This is used to locate an existing child of a device which is of a given  * uclass.  *  * The device is NOT probed  *  * @parent: Parent device to search  * @uclass_id:  Uclass to look for  * @devp:   Returns device found, if any  * @return 0 if found, else -ENODEV  */ int device_find_first_inactive_child(const struct udevice *parent,                      enum uclass_id uclass_id,                      struct udevice **devp);
/**  * device_find_first_child_by_uclass() - Find the first child of a device in uc  *  * @parent: Parent device to search  * @uclass_id:  Uclass to look for  * @devp: Returns first child device in that uclass, if any  * @return 0 if found, else -ENODEV  */ int device_find_first_child_by_uclass(const struct udevice *parent,                       enum uclass_id uclass_id,                       struct udevice **devp);
/**  * device_find_child_by_name() - Find a child by device name  *  * @parent: Parent device to search  * @name:   Name to look for  * @devp:   Returns device found, if any  * @return 0 if found, else -ENODEV  */ int device_find_child_by_name(const struct udevice *parent, const char *name,                   struct udevice **devp);
/**  * device_first_child_ofdata_err() - Find the first child and reads its plat  *  * The of_to_plat() method is called on the child before it is returned,  * but the child is not probed.  *  * @parent: Parent to check  * @devp: Returns child that was found, if any  * @return 0 on success, -ENODEV if no children, other -ve on error  */ int device_first_child_ofdata_err(struct udevice *parent,                   struct udevice **devp);
/*  * device_next_child_ofdata_err() - Find the next child and read its plat  *  * The of_to_plat() method is called on the child before it is returned,  * but the child is not probed.  *  * @devp: On entry, points to the previous child; on exit returns the child that  *  was found, if any  * @return 0 on success, -ENODEV if no children, other -ve on error  */ int device_next_child_ofdata_err(struct udevice **devp);
/**  * device_first_child_err() - Get the first child of a device  *  * The device returned is probed if necessary, and ready for use  *  * @parent: Parent device to search  * @devp:   Returns device found, if any  * @return 0 if found, -ENODEV if not, -ve error if device failed to probe  */ int device_first_child_err(struct udevice *parent, struct udevice **devp);
/**  * device_next_child_err() - Get the next child of a parent device  *  * The device returned is probed if necessary, and ready for use  *  * @devp: On entry, pointer to device to lookup. On exit, returns pointer  * to the next sibling if no error occurred  * @return 0 if found, -ENODEV if not, -ve error if device failed to probe  */ int device_next_child_err(struct udevice **devp);
/**  * device_has_children() - check if a device has any children  *  * @dev:    Device to check  * @return true if the device has one or more children  */ bool device_has_children(const struct udevice *dev);
/**  * device_has_active_children() - check if a device has any active children  *  * @dev:    Device to check  * @return true if the device has one or more children and at least one of  * them is active (probed).  */ bool device_has_active_children(const struct udevice *dev);
/**  * device_is_last_sibling() - check if a device is the last sibling  *  * This function can be useful for display purposes, when special action needs  * to be taken when displaying the last sibling. This can happen when a tree  * view of devices is being displayed.  *  * @dev:    Device to check  * @return true if there are no more siblings after this one - i.e. is it  * last in the list.  */ bool device_is_last_sibling(const struct udevice *dev);
/**  * device_set_name() - set the name of a device  *  * This must be called in the device's bind() method and no later. Normally  * this is unnecessary but for probed devices which don't get a useful name  * this function can be helpful.  *  * The name is allocated and will be freed automatically when the device is  * unbound.  *  * @dev:    Device to update  * @name:   New name (this string is allocated new memory and attached to  *      the device)  * @return 0 if OK, -ENOMEM if there is not enough memory to allocate the  * string  */ int device_set_name(struct udevice *dev, const char *name);
/**  * device_set_name_alloced() - note that a device name is allocated  *  * This sets the DM_FLAG_NAME_ALLOCED flag for the device, so that when it is  * unbound the name will be freed. This avoids memory leaks.  *  * @dev:    Device to update  */ void device_set_name_alloced(struct udevice *dev);
/**  * device_is_compatible() - check if the device is compatible with the compat  *  * This allows to check whether the device is comaptible with the compat.  *  * @dev:    udevice pointer for which compatible needs to be verified.  * @compat: Compatible string which needs to verified in the given  *      device  * @return true if OK, false if the compatible is not found  */ bool device_is_compatible(const struct udevice *dev, const char *compat);
/**  * of_machine_is_compatible() - check if the machine is compatible with  *              the compat  *  * This allows to check whether the machine is comaptible with the compat.  *  * @compat: Compatible string which needs to verified  * @return true if OK, false if the compatible is not found  */ bool of_machine_is_compatible(const char *compat);
/**  * dev_disable_by_path() - Disable a device given its device tree path  *  * @path:   The device tree path identifying the device to be disabled  * @return 0 on success, -ve on error  */ int dev_disable_by_path(const char *path);
/**  * dev_enable_by_path() - Enable a device given its device tree path  *  * @path:   The device tree path identifying the device to be enabled  * @return 0 on success, -ve on error  */ int dev_enable_by_path(const char *path);
/**  * device_is_on_pci_bus - Test if a device is on a PCI bus  *  * @dev:    device to test  * @return: true if it is on a PCI bus, false otherwise  */ static inline bool device_is_on_pci_bus(const struct udevice *dev) {     return dev->parent && device_get_uclass_id(dev->parent) == UCLASS_PCI; }
/**  * device_foreach_child_safe() - iterate through child devices safely  *  * This allows the @pos child to be removed in the loop if required.  *  * @pos: struct udevice * for the current device  * @next: struct udevice * for the next device  * @parent: parent device to scan  */ #define device_foreach_child_safe(pos, next, parent)    \     list_for_each_entry_safe(pos, next, &parent->child_head, sibling_node)
/**  * device_foreach_child() - iterate through child devices  *  * @pos: struct udevice * for the current device  * @parent: parent device to scan  */ #define device_foreach_child(pos, parent)   \     list_for_each_entry(pos, &parent->child_head, sibling_node)
/**  * device_foreach_child_of_to_plat() - iterate through children  *  * This stops when it gets an error, with @pos set to the device that failed to  * read ofdata.
 * This creates a for() loop which works through the available children of  * a device in order from start to end. Device ofdata is read by calling  * device_of_to_plat() on each one. The devices are not probed.  *  * @pos: struct udevice * for the current device  * @parent: parent device to scan  */ #define device_foreach_child_of_to_plat(pos, parent)    \     for (int _ret = device_first_child_ofdata_err(parent, &dev); !_ret; \          _ret = device_next_child_ofdata_err(&dev))
/**  * device_foreach_child_probe() - iterate through children, probing them  *  * This creates a for() loop which works through the available children of  * a device in order from start to end. Devices are probed if necessary,  * and ready for use.  *  * This stops when it gets an error, with @pos set to the device that failed to  * probe  *  * @pos: struct udevice * for the current device  * @parent: parent device to scan  */ #define device_foreach_child_probe(pos, parent) \     for (int _ret = device_first_child_err(parent, &dev); !_ret; \          _ret = device_next_child_err(&dev))
/**  * dm_scan_fdt_dev() - Bind child device in the device tree  *  * This handles device which have sub-nodes in the device tree. It scans all  * sub-nodes and binds drivers for each node where a driver can be found.  *  * If this is called prior to relocation, only pre-relocation devices will be  * bound (those marked with u-boot,dm-pre-reloc in the device tree, or where  * the driver has the DM_FLAG_PRE_RELOC flag set). Otherwise, all devices will  * be bound.  *  * @dev:    Device to scan  * @return 0 if OK, -ve on error  */ int dm_scan_fdt_dev(struct udevice *dev);
#endif
上一篇:linux驱动学习笔记(七)platform


下一篇:一:Auto.js概述