c-将外部支架生成网格以进行3D打印

序幕

这是我尝试再次询问封闭的Generating supporters for 3D printing,因为它是一个有趣的问题,但缺少重要的细节…我打算作为问答,目前我正在研究答案的代码,但随时可以回答(我接受最佳答案).

问题描述

OK这里有关该问题的一些基本信息:

> Supports in 3D Printing: A technology overview

由于这是一个巨大的问题,因此我将集中讨论通用的网格/支撑图案合并几何问题.

简而言之,如果要打印任何网格,则只有在网格连接到起始平面的角度最大为〜45度(对于不同的打印技术为/-)时,我们才可以进行打印.因此,如果我们有未连接到该平面的零件,则需要创建一个将其固定/连接到该平面的桥.这样的事情(图片取自上面链接的页面):

c-将外部支架生成网格以进行3D打印

在粗糙的情况下,我们需要添加尽可能少的材料,并且仍然具有足够的强度以将我们的网格固定在适当的位置而不会弯曲.最重要的是,我们需要削弱网格附近的支撑,以便在打印后轻松将其折断.

不要忘记形状和位置取决于许多因素,例如所使用的材料和技术,热流.

题:

为了将这个庞大的主题缩小为可回答的问题,让我们仅关注此问题:

如何将3D三角网格(边界表示如STL)与预定义的支撑图案(例如3边棱镜)垂直合并,并将其与定义的平面相连接?

使用简单的C.

解决方法:

OK让我们从绝对的基础开始.

>支撑形状

您可以使用任何形状来满足二手印刷技术的要求.在STL中最容易生成的是3个侧面的棱柱形形状,其中包含2个三角形的底面(顶部和底部)和3个侧面的所有均具有2个三角形.因此共有8个三角形.

c-将外部支架生成网格以进行3D打印

该形状将从某个基准平面(Z = 0)开始,一直上升直至撞到网格.但是,要进行这项工作,支撑必须在网格和网格本身之间有一个很小的间隙,在该网格上添加网格后,我们将添加弱化的关节结构.
>支持模式

这里有很多选择,所以我选择了最简单的方法(但是不是防污的),那就是将支撑放置在均匀的网格中,并在支撑之间保持恒定的距离.

因此,只需从基础平面上的每个网格位置向上投射光线,然后检查与网格的相交.如果找到支撑物,则将支撑物放置在该位置,高度应在交点以下.
>关节

这个想法是将非常薄的支架的风扇连接成圆锥形的形状,以小于45度的角度覆盖主支撑棱镜上方的支撑表面(因此,间隙应足够大,以这种方式覆盖栅格距离).

这里的主要问题是,我们必须细分要连接的三角形,以便满足STL网格属性.为了解决连接问题(避免STL出现孔洞或断开连接要求),我们可以对支撑使用不同的实体,而对网格使用不同的实体.这也将使我们能够触摸表面而无需重新对其进行三角测量,这使这项工作变得容易得多.

为简单起见,我选择了四面体形状,该形状可以很容易地由三角形构造,并且在网格/支撑关节处也存在缺陷.

因此,让我们进行一些测试STL网格并将其放置在基本平面上方:

c-将外部支架生成网格以进行3D打印

并提供我们的主要支持:

c-将外部支架生成网格以进行3D打印

以及关节:

c-将外部支架生成网格以进行3D打印

c-将外部支架生成网格以进行3D打印

这里是此STL3D.h的VCL / C代码:

//---------------------------------------------------------------------------
//--- simple STL 3D mesh ----------------------------------------------------
//---------------------------------------------------------------------------
#ifndef _STL3D_h
#define _STL3D_h
//---------------------------------------------------------------------------
#ifdef ComctrlsHPP
TProgressBar *progress=NULL;        // loading progress bar for realy big STL files
#endif
void _progress_init(int n);
void _progress     (int ix);
void _progress_done();
//---------------------------------------------------------------------------
class STL3D                         // STL 3D mesh
    {                                                                      
public:
    double center[3],size[3],rmax;  // bbox center,half sizes, max(size[])
    struct _fac
        {
        float p[3][3];              // triangle vertexes CCW order
        float n[3];                 // triangle unit normal pointing out
        WORD attr;
        _fac()  {}
        _fac(_fac& a)   { *this=a; }
        ~_fac() {}
        _fac* operator = (const _fac *a) { *this=*a; return this; }
        //_fac* operator = (const _fac &a) { ...copy... return this; }
        void compute()                                  // compute normal
            {
            float a[3],b[3];
            vectorf_sub(a,p[1],p[0]);
            vectorf_sub(b,p[2],p[1]);
            vectorf_mul(n,a,b);
            vectorf_one(n,n);
            }
        double intersect_ray(double *pos,double *dir)   // return -1 or distance to triangle and unit ray intersection
            {
            double p0[3],p1[3],p2[3];                   // input triangle vertexes
            double e1[3],e2[3],pp[3],qq[3],rr[3];       // dir must be unit vector !!!
            double t,u,v,det,idet;
            // get points
            vector_ld(p0,p[0][0],p[0][1],p[0][2]);
            vector_ld(p1,p[1][0],p[1][1],p[1][2]);
            vector_ld(p2,p[2][0],p[2][1],p[2][2]);
            //compute ray triangle intersection
            vector_sub(e1,p1,p0);
            vector_sub(e2,p2,p0);
            // Calculate planes normal vector
            vector_mul(pp,dir,e2);
            det=vector_mul(e1,pp);
            // Ray is parallel to plane
            if (fabs(det)<1e-8) return -1.0;
            idet=1.0/det;
            vector_sub(rr,pos,p0);
            u=vector_mul(rr,pp)*idet;
            if ((u<0.0)||(u>1.0)) return -1.0;
            vector_mul(qq,rr,e1);
            v=vector_mul(dir,qq)*idet;
            if ((v<0.0)||(u+v>1.0)) return -1.0;
            // distance
            t=vector_mul(e2,qq)*idet;
            if (t<0.0) t=-1.0;
            return t;
            }
        };
    List<_fac> fac;                         // faces

    STL3D() { reset(); }
    STL3D(STL3D& a) { *this=a; }
    ~STL3D() {}
    STL3D* operator = (const STL3D *a) { *this=*a; return this; }
    //STL3D* operator = (const STL3D &a) { ...copy... return this; }

    void reset(){ fac.num=0; compute(); }   // clear STL
    void draw();                            // render STL mesh (OpenGL)
    void draw_normals(float size);          // render STL normals (OpenGL)
    void compute();                         // compute bbox
    void compute_normals();                 // recompute normals from points
    void supports(reper &obj);              // compute supports with obj placement above base plane z=0
    void load(AnsiString name);
    void save(AnsiString name);
    };
//---------------------------------------------------------------------------
void STL3D::draw()
    {
    _fac *f; int i,j; BYTE r,g,b;
    glBegin(GL_TRIANGLES);
    for (f=fac.dat,i=0;i<fac.num;i++,f++)
        {
        glNormal3fv(f->n);
        if (f->attr<32768)
            {
            r= f->attr     &31; r<<=3;
            g=(f->attr>> 5)&31; g<<=3;
            b=(f->attr>>10)&31; b<<=3;
            glColor3ub(r,g,b);
            }
        for (j=0;j<3;j++) glVertex3fv(f->p[j]);
        }
    glEnd();
    }
//---------------------------------------------------------------------------
void STL3D::draw_normals(float size)
    {
    _fac *f;
    int i; float a[3],b[3];
    glBegin(GL_LINES);
    for (f=fac.dat,i=0;i<fac.num;i++,f++)
        {
        vectorf_add(a,f->p[0],f->p[1]);
        vectorf_add(a,a      ,f->p[2]);
        vectorf_mul(a,a,1.0/3.0);
        vectorf_mul(b,f->n,size); glVertex3fv(a);
        vectorf_add(b,b,a);       glVertex3fv(b);
        }
    glEnd();
    }
//---------------------------------------------------------------------------
void STL3D::compute()
    {
    _fac *f;
    int i,j,k;
    double p0[3],p1[3];
    vector_ld(center,0.0,0.0,0.0);
    vector_ld(size,0.0,0.0,0.0);
    rmax=0.0;
    if (fac.num==0) return;
    // bbox
    for (k=0;k<3;k++) p0[k]=fac.dat[0].p[0][k];
    for (k=0;k<3;k++) p1[k]=fac.dat[0].p[0][k];
    for (f=fac.dat,i=0;i<fac.num;i++,f++)
     for (j=0;j<3;j++)
      for (k=0;k<3;k++)
        {
        if (p0[k]>f->p[j][k]) p0[k]=f->p[j][k];
        if (p1[k]<f->p[j][k]) p1[k]=f->p[j][k];
        }
    vector_add(center,p0,p1); vector_mul(center,center,0.5);
    vector_sub(size  ,p1,p0); vector_mul(size  ,size  ,0.5);
                      rmax=size[0];
    if (rmax<size[1]) rmax=size[1];
    if (rmax<size[2]) rmax=size[2];
    // attr repair
    for (f=fac.dat,i=0;i<fac.num;i++,f++)
     if (f->attr==0) f->attr=32768;
    }
//---------------------------------------------------------------------------
void STL3D::compute_normals()
    {
    _fac *f; int i;
    for (f=fac.dat,i=0;i<fac.num;i++,f++) f->compute();
    }
//---------------------------------------------------------------------------
void STL3D::supports(reper &obj)
    {
    _fac *f,ff;
    int i,j,k;
    double p[3],dp[3],x0,y0,h0,x1,y1,x2,y2,h1,t;
    // some config values first
    const WORD   attr0=31<<10;              // support attr should be different than joint
    const WORD   attr1=31<<5;               // joint attr should be different than mesh,support
    const double grid0=8.0;                 // distance between supports
    const double grid1=2.0;                 // distance between joints
    const double gap=grid0/tan(45.0*deg);// distance between main support and mesh (joint size)
    const double ha=1.0;                    // main support side size
    // do not mess with these
    const double hx=    ha*cos(60.0*deg);   // half size of main support in x
    const double hy=0.5*ha*sin(60.0*deg);   // half size of main support in y
    const double grid2=0.4*hy;              // distance between joints bases
    const double ga=2.0*grid2*grid1/grid0;  // main support side size
    const double gx=hx*grid2/grid0;         // half size of joint support in x
    const double gy=hy*grid2/grid0;         // half size of joint support in y

    // apply placement obj (may lose some accuracy) not needed if matrices are not used
    for (f=fac.dat,i=0;i<fac.num;i++,f++)
        {
        for (j=0;j<3;j++)
            {
            for (k=0;k<3;k++) p[k]=f->p[j][k];  // float->double
            obj.l2g(p,p);
            for (k=0;k<3;k++) f->p[j][k]=p[k];  // double->float
            }
        for (k=0;k<3;k++) p[k]=f->n[k]; // float->double
        obj.l2g_dir(p,p);
        for (k=0;k<3;k++) f->n[k]=p[k]; // double->float
        } compute();

    // create supports
    for (x0=center[0]-size[0]+(0.5*grid0);x0<=center[0]+size[0]-(0.5*grid0);x0+=grid0)
     for (y0=center[1]-size[1]+(0.5*grid0);y0<=center[1]+size[1]-(0.5*grid0);y0+=grid0)
        {
        // cast ray x0,y0,0 in Z+ direction to check for mesh intersection to compute the support height h0
        h0=center[2]+size[2]+1e6;
        vector_ld(p,x0,y0,0.0);
        vector_ld(dp,0.0,0.0,+1.0);
        for (f=fac.dat,i=0;i<fac.num;i++,f++)
            {
            t=f->intersect_ray(p,dp);
            if ((t>=0.0)&&(t<h0)) h0=t;
            }
        if (h0>center[2]+size[2]+1e5) continue; // skip non intersected rays
        h0-=gap; if (h0<0.0) h0=0.0;
        // main suport prism
        ff.attr=attr0;
        // sides
        ff.attr=attr0;
        vectorf_ld(ff.p[0],x0-hx,y0-hy,0.0);
        vectorf_ld(ff.p[1],x0+hx,y0-hy,0.0);
        vectorf_ld(ff.p[2],x0-hx,y0-hy, h0); ff.compute(); fac.add(ff);
        vectorf_ld(ff.p[0],x0+hx,y0-hy,0.0);
        vectorf_ld(ff.p[1],x0+hx,y0-hy, h0);
        vectorf_ld(ff.p[2],x0-hx,y0-hy, h0); ff.compute(); fac.add(ff);

        vectorf_ld(ff.p[0],x0-hx,y0-hy, h0);
        vectorf_ld(ff.p[1],x0   ,y0+hy,0.0);
        vectorf_ld(ff.p[2],x0-hx,y0-hy,0.0); ff.compute(); fac.add(ff);
        vectorf_ld(ff.p[0],x0-hx,y0-hy, h0);
        vectorf_ld(ff.p[1],x0   ,y0+hy, h0);
        vectorf_ld(ff.p[2],x0   ,y0+hy,0.0); ff.compute(); fac.add(ff);

        vectorf_ld(ff.p[0],x0   ,y0+hy, h0);
        vectorf_ld(ff.p[1],x0+hx,y0-hy,0.0);
        vectorf_ld(ff.p[2],x0   ,y0+hy,0.0); ff.compute(); fac.add(ff);
        vectorf_ld(ff.p[0],x0   ,y0+hy, h0);
        vectorf_ld(ff.p[1],x0+hx,y0-hy, h0);
        vectorf_ld(ff.p[2],x0+hx,y0-hy,0.0); ff.compute(); fac.add(ff);
        // base triangles
        vectorf_ld(ff.p[0],x0   ,y0+hy,0.0);
        vectorf_ld(ff.p[1],x0+hx,y0-hy,0.0);
        vectorf_ld(ff.p[2],x0-hx,y0-hy,0.0); ff.compute(); fac.add(ff);
        vectorf_ld(ff.p[0],x0-hx,y0-hy, h0);
        vectorf_ld(ff.p[1],x0+hx,y0-hy, h0);
        vectorf_ld(ff.p[2],x0   ,y0+hy, h0); ff.compute(); fac.add(ff);

        // joints
        for (x1=x0-(0.5*grid0),x2=x0-(0.5*grid2);x1<=x0+(0.5*grid0);x1+=grid1,x2+=ga)
         for (y1=y0-(0.5*grid0),y2=y0-(1.9*grid2);y1<=y0+(0.5*grid0);y1+=grid1,y2+=ga)
            {
            // cast ray x1,y1,0 in Z+ direction to check for mesh intersection to compute the joint height h1
            h1=h0+gap+1e6;
            vector_ld(p,x1,y1,0.0);
            vector_ld(dp,0.0,0.0,+1.0);
            for (f=fac.dat,i=0;i<fac.num;i++,f++)
                {
                t=f->intersect_ray(p,dp);
                if ((t>=0.0)&&(t<h1)) h1=t;
                }
            if (h1>h0+gap+1e5) continue; // skip non intersected rays
            // tetrahedron joints
            ff.attr=attr1;
            // base triangle
            vectorf_ld(ff.p[0],x2   ,y2+gy,h0);
            vectorf_ld(ff.p[1],x2+gx,y2-gy,h0);
            vectorf_ld(ff.p[2],x2-gx,y2-gy,h0); ff.compute(); fac.add(ff);
            // sides
            vectorf_ld(ff.p[0],x2+gx,y2-gy,h0);
            vectorf_ld(ff.p[1],x2   ,y2+gy,h0);
            vectorf_ld(ff.p[2],x1   ,y1   ,h1); ff.compute(); fac.add(ff);
            vectorf_ld(ff.p[0],x2   ,y2+gy,h0);
            vectorf_ld(ff.p[1],x2-gx,y2-gy,h0);
            vectorf_ld(ff.p[2],x1   ,y1   ,h1); ff.compute(); fac.add(ff);
            vectorf_ld(ff.p[0],x2+gx,y2+gy,h0);
            vectorf_ld(ff.p[1],x2-gx,y2-gy,h0);
            vectorf_ld(ff.p[2],x1   ,y1   ,h1); ff.compute(); fac.add(ff);
            }
        }

    // reverse placement obj (may lose some accuracy) not needed if matrices are not used
    for (f=fac.dat,i=0;i<fac.num;i++,f++)
        {
        for (j=0;j<3;j++)
            {
            for (k=0;k<3;k++) p[k]=f->p[j][k];  // float->double
            obj.g2l(p,p);
            for (k=0;k<3;k++) f->p[j][k]=p[k];  // double->float
            }
        for (k=0;k<3;k++) p[k]=f->n[k]; // float->double
        obj.g2l_dir(p,p);
        for (k=0;k<3;k++) f->n[k]=p[k]; // double->float
        } compute();
    }
//---------------------------------------------------------------------------
void STL3D::load(AnsiString name)
    {
    int   adr,siz,hnd;
    BYTE *dat;
    AnsiString lin,s;
    int i,j,l,n;
    _fac f;

    reset(); f.attr=0;
    siz=0;
    hnd=FileOpen(name,fmOpenRead);
    if (hnd<0) return;
    siz=FileSeek(hnd,0,2);
        FileSeek(hnd,0,0);
    dat=new BYTE[siz];
    if (dat==NULL) { FileClose(hnd); return; }
    FileRead(hnd,dat,siz);
    FileClose(hnd);

    adr=0; s=txt_load_str(dat,siz,adr,true);
    // ASCII
    if (s=="solid")
        {
        _progress_init(siz); int progress_cnt=0;
        for (adr=0;adr<siz;)
            {
            progress_cnt++; if (progress_cnt>=128) { progress_cnt=0; _progress(adr); }
            lin=txt_load_lin(dat,siz,adr,true);
            for (i=1,l=lin.Length();i<=l;)
                {
                s=str_load_str(lin,i,true);
                if (s=="solid") { name=str_load_str(lin,i,true); break; }
                if (s=="endsolid") break;
                if (s=="facet")
                    {
                    j=0;
                    s=str_load_str(lin,i,true);
                    f.n[0]=str2num(str_load_str(lin,i,true));
                    f.n[1]=str2num(str_load_str(lin,i,true));
                    f.n[2]=str2num(str_load_str(lin,i,true));
                    }
                if (s=="vertex")
                 if (j<3)
                    {
                    f.p[j][0]=str2num(str_load_str(lin,i,true));
                    f.p[j][1]=str2num(str_load_str(lin,i,true));
                    f.p[j][2]=str2num(str_load_str(lin,i,true));
                    j++;
                    if (j==3) fac.add(f);
                    }
                break;
                }
            }
        }
    // binary
    else{
        adr=80;
        n=((DWORD*)(dat+adr))[0]; adr+=4;
        fac.allocate(n); fac.num=0;
        _progress_init(n); int progress_cnt=0;
        for (i=0;i<n;i++)
            {
            if (adr+50>siz) break;  // error
            progress_cnt++; if (progress_cnt>=128) { progress_cnt=0; _progress(i); }
            f.n[0]=((float*)(dat+adr))[0]; adr+=4;
            f.n[1]=((float*)(dat+adr))[0]; adr+=4;
            f.n[2]=((float*)(dat+adr))[0]; adr+=4;
            for (j=0;j<3;j++)
                {
                f.p[j][0]=((float*)(dat+adr))[0]; adr+=4;
                f.p[j][1]=((float*)(dat+adr))[0]; adr+=4;
                f.p[j][2]=((float*)(dat+adr))[0]; adr+=4;
                }
            f.attr=((WORD*)(dat+adr))[0]; adr+=2;   // attributes
            fac.add(f);
            }
        }
    _progress_done();
    delete[] dat;
    compute();
    }
//---------------------------------------------------------------------------
void STL3D::save(AnsiString name)
    {
    // ToDo
    }
//---------------------------------------------------------------------------
void _progress_init(int n)
    {
    #ifdef ComctrlsHPP
    if (progress==NULL) return;
    progress->Position=0;
    progress->Max=n;
    progress->Visible=true;
    #endif
    }
//---------------------------------------------------------------------------
void _progress     (int ix)
    {
    #ifdef ComctrlsHPP
    if (progress==NULL) return;
    progress->Position=ix;
    progress->Update();
    #endif
    }
//---------------------------------------------------------------------------
void _progress_done()
    {
    #ifdef ComctrlsHPP
    if (progress==NULL) return;
    progress->Visible=false;
    #endif
    }
//---------------------------------------------------------------------------
#endif
//---------------------------------------------------------------------------

用法很简单:

#include "STL3D.h"                  // STL mesh (this is the important stuff)
STL3D mesh;                         // point cloud and tetrahedronal mesh

mesh.load("space_invader_magnet.stl");
mesh.supports(obj); //  obj is object holding 4x4 uniform matrix of placement if you STL is already placed than it is not needed

我使用了很多来自我的OpenGL引擎的东西,例如动态List.模板:

列表与LT;双&GT XXX;与double xxx []相同;
xxx.add(5);在列表末尾加5
xxx [7]访问数组元素(安全)
xxx.dat [7]访问数组元素(不安全但快速的直接访问)
xxx.num是数组的实际使用大小
xxx.reset()清除数组并设置xxx.num = 0
xxx.allocate(100)为100个项目预分配空间

或向量和矩阵数学运算(vectorf_与float *配合使用,vector_与double配合使用)不太重要.如果需要数学运算,请参阅:

> Understanding 4×4 homogenous transform matrices

如果已经放置了STL(没有矩阵),则根本不需要放置转换,也不需要obj.该代码反映了上面的项目符号.我想尽可能地简化它,因此尚无优化方法.

间隙和网格常数在supports函数中进行了硬编码,尚未设置为有效值.

[笔记]

现在,这仅覆盖了问题的最基本部分,还有很多未解决的边缘情况,以保持此“简短”.代码本身不会检查三角形的斜率是否在45度以上,但是可以通过简单的法线角度检查来完成,例如:

if (acos(dot(normal,(0.0,0.0,1.0))<45.0*deg) continue;

例如,如果对象的层数多于从基础平面仅支持第一层的层,则需要在网格的各个部分之间添加支撑.其余的必须使用其下方的层…并在支撑的两侧使用弱化的接缝.类似于放置第一层支撑,您只需要在两个方向上投射射线…或通过整个bbox投射连续射线并通过分析射线的法线方向(点的简单符号)来检查起始/结束表面产品).例如,这是网格放置,可能需要这样做(对于某些技术):

c-将外部支架生成网格以进行3D打印

在设计支撑架时,请记住您在打印过程中应遵守正确的绕线规则(CCW)和法线方向(向外)…

上一篇:javascript-围绕球体的对象的三个js旋转


下一篇:问题 B: 【例9.3】求最长不下降序列(基础dp)