我正在尝试使用不同的自定义函数(尤其是来自scipy.stats)聚合pd.Dataframe.我可以将其与单个函数一起使用,在这种情况下为trim_mean:
import pandas as pd
import numpy as np
from scipy.stats import trim_mean
df = pd.DataFrame(np.random.randn(100, 3), columns=['A', 'B', 'C'], index=pd.date_range('1/1/2000', periods=100))
# this works as expected
df.agg([np.sum, np.mean])
# now with a different function, works also
df.agg(lambda x: trim_mean(x, 0.2))
# apply also works
df.apply(lambda x: trim_mean(x, 0.2))
但是,df.agg([lambda x:trim_mean(x,0.2)])会产生IndexError:元组索引超出范围’,与df.apply([lambda x:trim_mean(x,0.2)])一样.
我找到了old issue on pandas-dev,但这对我来说没有意义.
帮忙,有人吗?
解决方法:
您需要在函数列表之前使用lambda,以便返回DataFrame使用Series:
c = ['trim_mean','mean','sum']
print (df.agg(lambda x: pd.Series([trim_mean(x, 0.2), np.mean(x), np.sum(x)], index=c)))
要么:
print (df.apply(lambda x: pd.Series([trim_mean(x, 0.2), np.mean(x), np.sum(x)], index=c)))
A B C
trim_mean -0.143219 -0.018430 -0.097768
mean -0.171887 -0.042308 -0.004843
sum -17.188738 -4.230797 -0.484343
校验:
print (df.agg([np.sum, np.mean]))
A B C
sum -17.188738 -4.230797 -0.484343
mean -0.171887 -0.042308 -0.004843
print(df.agg(lambda x: trim_mean(x, 0.2)))
A -0.143219
B -0.018430
C -0.097768
dtype: float64