感觉这题的难点在于想到求违反条件的三元组。。
为什么在自己想的时候没有想到求反面呢!!!!
违反的三元组肯定存在一个人能打败其他两个人, 扫描的过程中用线段树维护一下就好了。
反思: 计数问题: 正难则反 正难则反 正难则反 !!!!
#include<bits/stdc++.h> #define LL long long #define LD long double #define ull unsigned long long #define fi first #define se second #define mk make_pair #define PLL pair<LL, LL> #define PLI pair<LL, int> #define PII pair<int, int> #define SZ(x) ((int)x.size()) #define ALL(x) (x).begin(), (x).end() #define fio ios::sync_with_stdio(false); cin.tie(0); using namespace std; const int N = 1e5 + 7; const int inf = 0x3f3f3f3f; const LL INF = 0x3f3f3f3f3f3f3f3f; const int mod = 1e9 + 7; const double eps = 1e-8; const double PI = acos(-1); template<class T, class S> inline void add(T& a, S b) {a += b; if(a >= mod) a -= mod;} template<class T, class S> inline void sub(T& a, S b) {a -= b; if(a < 0) a += mod;} template<class T, class S> inline bool chkmax(T& a, S b) {return a < b ? a = b, true : false;} template<class T, class S> inline bool chkmin(T& a, S b) {return a > b ? a = b, true : false;} int n, k, s[N]; int cntL[N], cntR[N]; vector<int> in[N], ot[N]; #define lson l, mid, rt << 1 #define rson mid + 1, r, rt << 1 | 1 struct setmentTree { int a[N << 2][2]; int flip[N << 2]; inline void pull(int rt) { a[rt][0] = a[rt << 1][0] + a[rt << 1 | 1][0]; a[rt][1] = a[rt << 1][1] + a[rt << 1 | 1][1]; } inline void push(int rt) { if(flip[rt]) { swap(a[rt << 1][0], a[rt << 1][1]); swap(a[rt << 1 | 1][0], a[rt << 1 | 1][1]); flip[rt << 1] ^= 1; flip[rt << 1 | 1] ^= 1; flip[rt] = 0; } } void build(int l, int r, int rt) { flip[rt] = 0; if(l == r) { a[rt][0] = 1; a[rt][1] = 0; return; } int mid = l + r >> 1; build(lson); build(rson); pull(rt); } void update(int L, int R, int l, int r, int rt) { if(R < l || r < L || R < L) return; if(L <= l && r <= R) { swap(a[rt][0], a[rt][1]); flip[rt] ^= 1; return; } push(rt); int mid = l + r >> 1; update(L, R, lson); update(L, R, rson); pull(rt); } PII query(int L, int R, int l, int r, int rt) { if(R < l || r < L || R < L) return mk(0, 0); if(L <= l && r <= R) return mk(a[rt][0], a[rt][1]); push(rt); int mid = l + r >> 1; PII ret, tmp; tmp = query(L, R, lson); ret.fi += tmp.fi; ret.se += tmp.se; tmp = query(L, R, rson); ret.fi += tmp.fi; ret.se += tmp.se; return ret; } } Tree; struct Line { int l, r; } seg[N]; int main() { scanf("%d%d", &n, &k); for(int i = 1; i <= n; i++) scanf("%d", &s[i]); sort(s + 1, s + 1 + n); for(int i = 1; i <= k; i++) { int a, b; scanf("%d%d", &a, &b); a = lower_bound(s + 1, s + 1 + n, a) - s; b = upper_bound(s + 1, s + 1 + n, b) - s - 1; seg[i].l = a; seg[i].r = b; if(a <= b) { in[a].push_back(i); ot[b].push_back(i); } } Tree.build(1, n, 1); for(int i = 1; i <= n; i++) { for(auto &id : in[i]) Tree.update(seg[id].l, seg[id].r, 1, n, 1); cntL[i] = Tree.query(1, i - 1, 1, n, 1).fi; for(auto &id : ot[i]) Tree.update(seg[id].l, seg[id].r, 1, n, 1); } Tree.build(1, n, 1); for(int i = n; i >= 1; i--) { for(auto &id : ot[i]) Tree.update(seg[id].l, seg[id].r, 1, n, 1); cntR[i] = Tree.query(i + 1, n, 1, n, 1).se; for(auto &id : in[i]) Tree.update(seg[id].l, seg[id].r, 1, n, 1); } LL ans = 1LL * n * (n - 1) * (n - 2) / 6; for(int i = 1; i <= n; i++) { ans -= 1LL * cntL[i] * (cntL[i] - 1) / 2; ans -= 1LL * cntR[i] * (cntR[i] - 1) / 2; ans -= 1LL * cntL[i] * cntR[i]; } printf("%lld\n", ans); return 0; } /* */