A clique is a subset of vertices of an undirected graph such that every two distinct vertices in the clique are adjacent. A maximal clique is a clique that cannot be extended by including one more adjacent vertex. (Quoted from https://en.wikipedia.org/wiki/Clique_(graph_theory))
Now it is your job to judge if a given subset of vertices can form a maximal clique.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers Nv (≤ 200), the number of vertices in the graph, and Ne, the number of undirected edges. Then Ne lines follow, each gives a pair of vertices of an edge. The vertices are numbered from 1 to Nv.
After the graph, there is another positive integer M (≤ 100). Then M lines of query follow, each first gives a positive number K (≤ Nv), then followed by a sequence of K distinct vertices. All the numbers in a line are separated by a space.
Output Specification:
For each of the M queries, print in a line Yes
if the given subset of vertices can form a maximal clique; or if it is a clique but not a maximal clique, print Not Maximal
; or if it is not a clique at all, print Not a Clique
.
Sample Input:
8 10
5 6
7 8
6 4
3 6
4 5
2 3
8 2
2 7
5 3
3 4
6
4 5 4 3 6
3 2 8 7
2 2 3
1 1
3 4 3 6
3 3 2 1
Sample Output:
Yes
Yes
Yes
Yes
Not Maximal
Not a Clique
#include<bits/stdc++.h> using namespace std; typedef long long ll; #define MAXN 10005 int G[MAXN][MAXN] = {0}; int n,m; bool is_clique(vector<int> v){ for(int i=0;i < v.size();i++){ for(int j=i+1;j < v.size();j++){ if(!G[v[i]][v[j]]) return 0; } } return 1; } bool is_exist(vector<int> v,int num){ for(int i=0;i < v.size();i++){ if(v[i] == num) return 1; } return 0; } int main(){ cin >> n >> m; for(int i=0;i < m;i++){ int x,y; cin >> x >> y; G[x][y] = 1; G[y][x] = 1; } int q; cin >> q; while(q--){ int K; cin >> K; vector<int> temp; for(int i=0;i < K;i++){ int nnn; cin >> nnn; temp.push_back(nnn); } if(is_clique(temp)){ int flag=1; for(int i=1;i <= n;i++){ if(!is_exist(temp,i)){ temp.push_back(i); if(is_clique(temp)){ cout << "Not Maximal" << endl; flag=0; break; } else temp.pop_back(); } } if(flag) cout << "Yes" << endl; } else cout << "Not a Clique" << endl; } return 0; }
——这题都不能算图吧,太简单了。