A clique is a subset of vertices of an undirected graph such that every two distinct vertices in the clique are adjacent. A maximal clique is a clique that cannot be extended by including one more adjacent vertex. (Quoted from https://en.wikipedia.org/wiki/Clique_(graph_theory))
Now it is your job to judge if a given subset of vertices can form a maximal clique.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers Nv (≤ 200), the number of vertices in the graph, and Ne, the number of undirected edges. Then Ne lines follow, each gives a pair of vertices of an edge. The vertices are numbered from 1 to Nv.
After the graph, there is another positive integer M (≤ 100). Then M lines of query follow, each first gives a positive number K (≤ Nv), then followed by a sequence of K distinct vertices. All the numbers in a line are separated by a space.
Output Specification:
For each of the M queries, print in a line Yes
if the given subset of vertices can form a maximal clique; or if it is a clique but not a maximal clique, print Not Maximal
; or if it is not a clique at all, print Not a Clique
.
Sample Input:
8 10
5 6
7 8
6 4
3 6
4 5
2 3
8 2
2 7
5 3
3 4
6
4 5 4 3 6
3 2 8 7
2 2 3
1 1
3 4 3 6
3 3 2 1
Sample Output:
Yes Yes Yes Yes Not Maximal Not a Clique
#include<bits/stdc++.h> using namespace std; const int maxn=1010; #define inf 0x3fffffff int e[maxn][maxn],n,m,k; void check(int dex){ int kk; scanf("%d",&kk); vector<int> v(kk); for(int i=0;i<kk;i++){ scanf("%d",&v[i]); } for(int i=0;i<kk-1;i++){ if(e[v[i]][v[i+1]]==inf){ printf("Not a Clique\n"); return ; } } int flag,flag2=0,cnt; for(int i=1;i<=n;i++){ flag=1; cnt=0; for(int j=0;j<kk;j++){ if(i==v[j]){ flag=0; break; } } if(flag==1){ for(int j=0;j<kk;j++){ if(e[i][v[j]]==1){ cnt++; } } if(cnt==kk){ printf("Not Maximal\n"); flag2=1; break; } } } if(flag2==0){ printf("Yes\n"); } } int main(){ fill(e[0],e[0]+maxn*maxn,inf); scanf("%d %d",&n,&m); for(int i=0;i<m;i++){ int a,b; scanf("%d %d",&a,&b); e[a][b]=e[b][a]=1; } scanf("%d",&k); for(int i=0;i<k;i++){ check(i); } return 0; }