论文阅读以及pytorch源码详解-image-inpainting-via-generative-multi-column-convolutional-neural-networks-Paper

1. 动机(motivation)

1.针对如何提取到图像合适特征的问题,本文提出了多个分支的卷积分支,每个分支采用不同的感受野,并将图像分解成不同的感受野

2.针对如何为缺失区域寻找相似的patch,本文提出了马尔可夫随机场(ID-MRF)项,

3.针对缺失区域的修复结果有很多可能性的结果,提出了新的置信驱动的重建损失(与空间衰减损失类似),根据缺失区域的空间位置约束生成的内容

2.具体方法

论文阅读以及pytorch源码详解-image-inpainting-via-generative-multi-column-convolutional-neural-networks-Paper

训练的是一种端到端的方式,输入是X破损的图片和掩码M,缺损的区域的填充值为0,M是二进制掩码,0 代表已知的像素,1代表破损区域。

###2.1网络的架构

如上图所示,包含三个子网络。一个生成网络,一个全局和局部鉴别器网络,和一个预训练的VGG网络来计算ID-MRF loss。在测试阶段仅仅只有生成网络被使用。

生成器网络包含三个平行的编码-解码卷积结构的分支来提取输入数据(破损图片和掩码M)的不同水平的特征,一个共享的解码器网络将三个分支提取的特征(这里的特征图的尺寸是和原始图片大小一样大)进行concat组合起来作为输入,将组合的特征进行解码到自然图像的数据空间上去(即进行图像的修复)。如图2所示,三个分支使用不同的感受野进行特征提取。不同的感受野必然会导致最后得到的特征图的尺寸不一样大,那么三个分支的提取到的特征图就不好concat组合,本文是采用双线性插值进行上采样进行扩大特征图的尺寸。

虽然三个分支看上去是相互独立的,但是由于共享解码器,三者之间是互相影响的

2.2 ID-MRF Regularization

这一部分,解决上述语义结构匹配和计算量大的迭代MRF优化问题。计划是只在训练阶段采用mrf的正规化.ID-MRF是在特征空间上对生成区域(修复的区域)的内容和相应真实图片最近邻区域之间不同的优化。由于只在训练中使用它,完整的ground truth图像可以让我们知道高质量的最近邻,并给网络适当的约束。

​ 要计算ID-MRF损失,可以简单地使用直接相似度度量(如余弦相似度)来找到生成内容中的补丁的最近邻居。但这一过程往往产生平滑的结构,因为一个平坦的区域容易连接到类似的模式,并迅速减少结构的多样性。我们采用相对距离度量[17,16,22]来建模局部特征与目标特征集之间的关系。它可以恢复如图3(b)所示的细微细节。

论文阅读以及pytorch源码详解-image-inpainting-via-generative-multi-column-convolutional-neural-networks-Paper

具体地,用 Y g ∗ Y_g^* Yg∗​代表对缺失区域的修复结果的内容, Y g ∗ L Y_g^{*L} Yg∗L​和 Y L Y^L YL分别代表来自预训练模型的第L层的特征。

patch v和s分别来自 Y g ∗ L Y_g^{*L} Yg∗L​和 Y L Y^L YL,定义v与s的相对相似度为:
论文阅读以及pytorch源码详解-image-inpainting-via-generative-multi-column-convolutional-neural-networks-Paper

注意:Y是真实图片

这里的u(.,.)是计算余弦相似度。 r ∈ p s ( Y L ) r\in ps(Y^L) r∈ps(YL)意思是r是属于除了s的 Y L Y^L YL,h 和 ϵ \epsilon ϵ是两个正常数。如果v比 Y L Y^L YL中的其他patch更像s, RS(v,s)会变大。

接下来,RS(v,s)归一化为:

论文阅读以及pytorch源码详解-image-inpainting-via-generative-multi-column-convolutional-neural-networks-Paper

最后,根据公式2, Y g ∗ L Y_g^{*L} Yg∗L​和 Y L Y^L YL之间的ID-MRF损失被定义为:

论文阅读以及pytorch源码详解-image-inpainting-via-generative-multi-column-convolutional-neural-networks-Paper

这里的Z是标准化参数,对于每一个属于 Y L Y^L YL的patch s, v ’ = a r g m a x v ∈ Y g ∗ L R S ( v , s ) ∗ v’=arg max_{v\in Y_g^{*L} }RS(v,s)^* v’=argmaxv∈Yg∗L​​RS(v,s)∗。

味着v‘相对于 Y g ∗ L Y_g^{*L} Yg∗L​中的其他patch更加接近patch s。一个极端的例子是 Y g ∗ L Y_g^{*L} Yg∗L​中的所有pathch都非常接近一个patch s。而其他的patch r 论文阅读以及pytorch源码详解-image-inpainting-via-generative-multi-column-convolutional-neural-networks-Paper

所以Lm(L)值更大。

另一个方面,当 Y g ∗ L Y_g^{*L} Yg∗L​中的patch与 Y L Y^L YL中的候选者非常接近, Y L Y^L YL中的每一个 patch r在 Y g ∗ L Y_g^{*L} Yg∗L​中有一个唯一的最近邻。那么结果就是RS’(v,r)变大,LM(L)变小。

从这个观点出发,最小化LM(L)鼓励 Y g ∗ L Y_g^{*L} Yg∗L​中的每一个patch V都不同于 Y L Y^L YL中的patch,使得变得多样化。

​ 该方法的一个明显优点是提高了 Y g ∗ L Y_g^{*L} Yg∗L​和 Y L Y^L YL特征分布之间的相似性。通过最小化ID-MRF损失,不仅局部神经patch在 Y L Y^L YL中找到对应的候选纹理,而且特征分布更接近,有助于捕获复杂纹理的变化。

​ 我们最终的ID-MRF损失是在VGG19的几个特征层上计算的。按照一般实践[5,14],我们使用conv4_2描述图像语义结构。然后利用conv3_2和conv4_2 4将图像纹理描述为:

论文阅读以及pytorch源码详解-image-inpainting-via-generative-multi-column-convolutional-neural-networks-Paper

2.3 Information Fusion

  1. 空间重建损失

    破损区域距离边界近的应该比距离边界远的具有更加多的约束。

  2. 生成对抗损失

    采用更加优化的w-GAN来实现

2.4最终的损失函数

论文阅读以及pytorch源码详解-image-inpainting-via-generative-multi-column-convolutional-neural-networks-Paper

###2.5训练方法

首先仅仅使用重建损失即将 λ m r f 和 λ a d v \lambda_{mrf}和\lambda_{adv} λmrf​和λadv​设置为0进行训练,来稳定后面的对抗训练。

模型G收敛后,我们设置λ mrf = 0.05和λ adv = 0.001进行微调直到收敛。利用Adam优化器[13]对训练过程进行优化,学习率为1e4。设β 1 = 0.5, β 2 = 0.9。批大小为16。

3. GMCNN的pytorch源码详解与实现

3.1训练配置代码,train_options.py

import argparse
import os
import time

class TrainOptions:
    def __init__(self):
        self.parser = argparse.ArgumentParser()
        self.initialized = False

    def initialize(self):
        # experiment specifics
        self.parser.add_argument('--dataset', type=str, default='Celebhq',help='dataset of the experiment.')
        #self.parser.add_argument('--data_file', type=str, default='', help='the file storing training image paths')
        self.parser.add_argument('--data_file', type=str, default='/root/workspace/pyproject/inpainting_gmcnn-master/pytorch/util/celeba_256_train.txt', help='the file storing training image paths')#这个文件里是存放的每张图片的绝对路径
        
        self.parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0  0,1,2')
        self.parser.add_argument('--checkpoint_dir', type=str, default='./checkpoints', help='models are saved here')
       # self.parser.add_argument('--load_model_dir', type=str, default='', help='pretrained models are given here')
        self.parser.add_argument('--load_model_dir', type=str, default='/root/workspace/pyproject/inpainting_gmcnn-master/pytorch/checkpoints/20210509-164655_GMCNN_Celebhq_b8_s256x256_gc32_dc64_randmask-rect_pretrain', help='pretrained models are given here')
        self.parser.add_argument('--phase', type=str, default='train')

        # input/output sizes
       # self.parser.add_argument('--batch_size', type=int, default=16, help='input batch size')
        self.parser.add_argument('--batch_size', type=int, default=8, help='input batch size')

        # for setting inputs
        self.parser.add_argument('--random_crop', type=int, default=1,
                                 help='using random crop to process input image when '
                                      'the required size is smaller than the given size')
        self.parser.add_argument('--random_mask', type=int, default=1)
        self.parser.add_argument('--mask_type', type=str, default='rect')
        self.parser.add_argument('--pretrain_network', type=int, default=0)#wm,是否是预训练网络,1代表预训练,预训练是仅仅用重建损失训练生成网络,0代表微调网络,加上ID-MRF和生成对抗损失
        self.parser.add_argument('--lambda_adv', type=float, default=1e-3)
        self.parser.add_argument('--lambda_rec', type=float, default=1.4)
        self.parser.add_argument('--lambda_ae', type=float, default=1.2)
        self.parser.add_argument('--lambda_mrf', type=float, default=0.05)
        self.parser.add_argument('--lambda_gp', type=float, default=10)
        self.parser.add_argument('--random_seed', type=bool, default=False)
        self.parser.add_argument('--padding', type=str, default='SAME')
        self.parser.add_argument('--D_max_iters', type=int, default=5)#训练时,生成器每训练5次,然后更新一次鉴别器的网络
        self.parser.add_argument('--lr', type=float, default=1e-5, help='learning rate for training')

        self.parser.add_argument('--train_spe', type=int, default=1000)
        self.parser.add_argument('--epochs', type=int, default=40)
        self.parser.add_argument('--viz_steps', type=int, default=5)
        self.parser.add_argument('--spectral_norm', type=int, default=1)

        self.parser.add_argument('--img_shapes', type=str, default='256,256,3',
                                 help='given shape parameters: h,w,c or h,w')
        self.parser.add_argument('--mask_shapes', type=str, default='128,128',
                                 help='given mask parameters: h,w')
        self.parser.add_argument('--max_delta_shapes', type=str, default='32,32')
        self.parser.add_argument('--margins', type=str, default='0,0')


        # for generator
        self.parser.add_argument('--g_cnum', type=int, default=32,
                                 help='# of generator filters in first conv layer')
        self.parser.add_argument('--d_cnum', type=int, default=64,
                                 help='# of discriminator filters in first conv layer')

        # for id-mrf computation
        self.parser.add_argument('--vgg19_path', type=str, default='vgg19_weights/imagenet-vgg-verydeep-19.mat')
        # for instance-wise features
        self.initialized = True

    def parse(self):
        if not self.initialized:
            self.initialize()
        self.opt = self.parser.parse_args()

        self.opt.dataset_path = self.opt.data_file

        str_ids = self.opt.gpu_ids.split(',')
        self.opt.gpu_ids = []
        for str_id in str_ids:
            id = int(str_id)
            if id >= 0:
                self.opt.gpu_ids.append(str(id))

        assert self.opt.random_crop in [0, 1]
        self.opt.random_crop = True if self.opt.random_crop == 1 else False

        assert self.opt.random_mask in [0, 1]
        self.opt.random_mask = True if self.opt.random_mask == 1 else False

        assert self.opt.pretrain_network in [0, 1]
        self.opt.pretrain_network = True if self.opt.pretrain_network == 1 else False

        assert self.opt.spectral_norm in [0, 1]
        self.opt.spectral_norm = True if self.opt.spectral_norm == 1 else False

        assert self.opt.padding in ['SAME', 'MIRROR']

        assert self.opt.mask_type in ['rect', 'stroke']

        str_img_shapes = self.opt.img_shapes.split(',')
        self.opt.img_shapes = [int(x) for x in str_img_shapes]

        str_mask_shapes = self.opt.mask_shapes.split(',')
        self.opt.mask_shapes = [int(x) for x in str_mask_shapes]

        str_max_delta_shapes = self.opt.max_delta_shapes.split(',')
        self.opt.max_delta_shapes = [int(x) for x in str_max_delta_shapes]

        str_margins = self.opt.margins.split(',')
        self.opt.margins = [int(x) for x in str_margins]

        # model name and date
        self.opt.date_str = time.strftime('%Y%m%d-%H%M%S')
        self.opt.model_name = 'GMCNN'
        self.opt.model_folder = self.opt.date_str + '_' + self.opt.model_name
        self.opt.model_folder += '_' + self.opt.dataset
        self.opt.model_folder += '_b' + str(self.opt.batch_size)
        self.opt.model_folder += '_s' + str(self.opt.img_shapes[0]) + 'x' + str(self.opt.img_shapes[1])
        self.opt.model_folder += '_gc' + str(self.opt.g_cnum)
        self.opt.model_folder += '_dc' + str(self.opt.d_cnum)

        self.opt.model_folder += '_randmask-' + self.opt.mask_type if self.opt.random_mask else ''
        self.opt.model_folder += '_pretrain' if self.opt.pretrain_network else ''

        if os.path.isdir(self.opt.checkpoint_dir) is False:
            os.mkdir(self.opt.checkpoint_dir)

        self.opt.model_folder = os.path.join(self.opt.checkpoint_dir, self.opt.model_folder)
        if os.path.isdir(self.opt.model_folder) is False:
            os.mkdir(self.opt.model_folder)

        # set gpu ids
        if len(self.opt.gpu_ids) > 0:
            os.environ['CUDA_VISIBLE_DEVICES'] = ','.join(self.opt.gpu_ids)

        args = vars(self.opt)

        print('------------ Options -------------')
        for k, v in sorted(args.items()):
            print('%s: %s' % (str(k), str(v)))
        print('-------------- End ----------------')

        return self.opt

3.2训练代码train.py

import os
from torch.utils.data import DataLoader
from torchvision import transforms
import torchvision.utils as vutils
from tensorboardX import SummaryWriter
from data.data import InpaintingDataset, ToTensor
from model.net import InpaintingModel_GMCNN
from options.train_options import TrainOptions
from util.utils import getLatest
import tqdm

config = TrainOptions().parse()#wm获取训练的配置信息超参数
print("训练配置信息config:",config)#wm


print('loading data........')
#wm,根据图片的绝对路径,加载数据集
dataset = InpaintingDataset(config.dataset_path, '', transform=transforms.Compose([
    ToTensor()#图片数据将会被转换成tensor,并且数值都在0-1之间
]))


#wm,生成数据集的batch_size迭代器
dataloader = DataLoader(dataset, batch_size=config.batch_size, shuffle=True, num_workers=4, drop_last=True)
print('data load end.........')

print('configuring model..')
ourModel = InpaintingModel_GMCNN(in_channels=4, opt=config)#wm,根据训练配置信息参数,实例化一个GMCNN模型


ourModel.print_networks()#打印模型的网络


if config.load_model_dir != '':
    print('Loading pretrained model from {}'.format(config.load_model_dir))
    ourModel.load_networks(getLatest(os.path.join(config.load_model_dir, '*.pth')))
    print('Loading done.')
# ourModel = torch.nn.DataParallel(ourModel).cuda()
print('model setting up..')
print('training initializing..')


writer = SummaryWriter(log_dir=config.model_folder)#使用tensorboardX实例化一个日志类

cnt = 0#用来记录训练了多少个batch_size
#config.epochs=30
for epoch in range(config.epochs):

    for i, data in enumerate(dataloader):
        gt = data['gt'].cuda()
        # normalize to values between -1 and 1,
        gt = gt / 127.5 - 1

        data_in = {'gt': gt}
        ourModel.setInput(data_in)#wm,将一个batch_size里的图片送入网络
        ourModel.optimize_parameters()#wm,通过这一个batch_size的数据对网络进行训练优化参数

        if (i+1) % config.viz_steps == 0:                   #viz_steps=5
            ret_loss = ourModel.get_current_losses()#wm,得到当前这个一个batch数据计算到的各种损失值
            if config.pretrain_network is False:
                print(
                    '[%d, %5d] G_loss: %.4f (rec: %.4f, ae: %.4f, adv: %.4f, mrf: %.4f), D_loss: %.4f'
                    % (epoch + 1, i + 1, ret_loss['G_loss'], ret_loss['G_loss_rec'], ret_loss['G_loss_ae'],
                       ret_loss['G_loss_adv'], ret_loss['G_loss_mrf'], ret_loss['D_loss']))

                writer.add_scalar('adv_loss', ret_loss['G_loss_adv'], cnt)
                writer.add_scalar('D_loss', ret_loss['D_loss'], cnt)
                writer.add_scalar('G_mrf_loss', ret_loss['G_loss_mrf'], cnt)
            else:
                print('[%d, %5d] G_loss: %.4f (rec: %.4f, ae: %.4f)'
                      % (epoch + 1, i + 1, ret_loss['G_loss'], ret_loss['G_loss_rec'], ret_loss['G_loss_ae']))

            #wm,将各种损失的值添加到日志类writer中,cnt是训练了第多少个batch_size
            writer.add_scalar('G_loss', ret_loss['G_loss'], cnt)
            writer.add_scalar('reconstruction_loss', ret_loss['G_loss_rec'], cnt)
            writer.add_scalar('autoencoder_loss', ret_loss['G_loss_ae'], cnt)

            #images中包含了三中类型的图
            images = ourModel.get_current_visuals_tensor()

            im_completed = vutils.make_grid(images['completed'], normalize=True, scale_each=True)#修复的图
            im_input = vutils.make_grid(images['input'], normalize=True, scale_each=True)#输入的带掩码的图
            im_gt = vutils.make_grid(images['gt'], normalize=True, scale_each=True)#真实的图

            # wm,将训练过程中产生的图添加到日志类writer中,cnt是训练了第多少个batch_size
            writer.add_image('gt', im_gt, cnt)
            writer.add_image('input', im_input, cnt)
            writer.add_image('completed', im_completed, cnt)

            #wm,每训练1000个batch_size,就保存一次模型
            if (i+1) % config.train_spe == 0:#wm,train_spe=1000
                print('saving model ..')
                ourModel.save_networks(epoch+1)
        cnt += 1
    ourModel.save_networks(epoch+1)#保存最后一个epoch的模型

writer.export_scalars_to_json(os.path.join(config.model_folder, 'GMCNN_scalars.json'))
writer.close()

3.3搭建GMCNN网络net.py

import torch
import torch.nn as nn
import torch.nn.functional as F
from model.basemodel import BaseModel
from model.basenet import BaseNet
from model.loss import WGANLoss, IDMRFLoss
from model.layer import init_weights, PureUpsampling, ConfidenceDrivenMaskLayer, SpectralNorm
import numpy as np

# generative multi-column convolutional neural net
#1.GMCNN的分支卷积网络,即修复器的网络,用不同的感受野来进行特征提取
class GMCNN(BaseNet):
    def __init__(self, in_channels, out_channels, cnum=32, act=F.elu, norm=F.instance_norm, using_norm=False):
        super(GMCNN, self).__init__()
        self.act = act
        self.using_norm = using_norm
        if using_norm is True:
            self.norm = norm
        else:
            self.norm = None
        ch = cnum

        # network structure
        self.EB1 = []#wm,第一个分支
        self.EB2 = []#wm,第二个分支
        self.EB3 = []#wm,第三个分支
        self.decoding_layers = []#一个共享的解码器层

        self.EB1_pad_rec = []
        self.EB2_pad_rec = []
        self.EB3_pad_rec = []

        self.EB1.append(nn.Conv2d(in_channels, ch, kernel_size=7, stride=1))

        self.EB1.append(nn.Conv2d(ch, ch * 2, kernel_size=7, stride=2))
        self.EB1.append(nn.Conv2d(ch * 2, ch * 2, kernel_size=7, stride=1))

        self.EB1.append(nn.Conv2d(ch * 2, ch * 4, kernel_size=7, stride=2))
        self.EB1.append(nn.Conv2d(ch * 4, ch * 4, kernel_size=7, stride=1))
        self.EB1.append(nn.Conv2d(ch * 4, ch * 4, kernel_size=7, stride=1))

        self.EB1.append(nn.Conv2d(ch * 4, ch * 4, kernel_size=7, stride=1, dilation=2))
        self.EB1.append(nn.Conv2d(ch * 4, ch * 4, kernel_size=7, stride=1, dilation=4))
        self.EB1.append(nn.Conv2d(ch * 4, ch * 4, kernel_size=7, stride=1, dilation=8))
        self.EB1.append(nn.Conv2d(ch * 4, ch * 4, kernel_size=7, stride=1, dilation=16))

        self.EB1.append(nn.Conv2d(ch * 4, ch * 4, kernel_size=7, stride=1))
        self.EB1.append(nn.Conv2d(ch * 4, ch * 4, kernel_size=7, stride=1))

        self.EB1.append(PureUpsampling(scale=4))

        self.EB1_pad_rec = [3, 3, 3, 3, 3, 3, 6, 12, 24, 48, 3, 3, 0]

        self.EB2.append(nn.Conv2d(in_channels, ch, kernel_size=5, stride=1))

        self.EB2.append(nn.Conv2d(ch, ch * 2, kernel_size=5, stride=2))
        self.EB2.append(nn.Conv2d(ch * 2, ch * 2, kernel_size=5, stride=1))

        self.EB2.append(nn.Conv2d(ch * 2, ch * 4, kernel_size=5, stride=2))
        self.EB2.append(nn.Conv2d(ch * 4, ch * 4, kernel_size=5, stride=1))
        self.EB2.append(nn.Conv2d(ch * 4, ch * 4, kernel_size=5, stride=1))

        self.EB2.append(nn.Conv2d(ch * 4, ch * 4, kernel_size=5, stride=1, dilation=2))
        self.EB2.append(nn.Conv2d(ch * 4, ch * 4, kernel_size=5, stride=1, dilation=4))
        self.EB2.append(nn.Conv2d(ch * 4, ch * 4, kernel_size=5, stride=1, dilation=8))
        self.EB2.append(nn.Conv2d(ch * 4, ch * 4, kernel_size=5, stride=1, dilation=16))

        self.EB2.append(nn.Conv2d(ch * 4, ch * 4, kernel_size=5, stride=1))
        self.EB2.append(nn.Conv2d(ch * 4, ch * 4, kernel_size=5, stride=1))

        self.EB2.append(PureUpsampling(scale=2, mode='nearest'))
        self.EB2.append(nn.Conv2d(ch * 4, ch * 2, kernel_size=5, stride=1))
        self.EB2.append(nn.Conv2d(ch * 2, ch * 2, kernel_size=5, stride=1))
        self.EB2.append(PureUpsampling(scale=2))
        self.EB2_pad_rec = [2, 2, 2, 2, 2, 2, 4, 8, 16, 32, 2, 2, 0, 2, 2, 0]

        self.EB3.append(nn.Conv2d(in_channels, ch, kernel_size=3, stride=1))

        self.EB3.append(nn.Conv2d(ch, ch * 2, kernel_size=3, stride=2))
        self.EB3.append(nn.Conv2d(ch * 2, ch * 2, kernel_size=3, stride=1))

        self.EB3.append(nn.Conv2d(ch * 2, ch * 4, kernel_size=3, stride=2))
        self.EB3.append(nn.Conv2d(ch * 4, ch * 4, kernel_size=3, stride=1))
        self.EB3.append(nn.Conv2d(ch * 4, ch * 4, kernel_size=3, stride=1))

        self.EB3.append(nn.Conv2d(ch * 4, ch * 4, kernel_size=3, stride=1, dilation=2))
        self.EB3.append(nn.Conv2d(ch * 4, ch * 4, kernel_size=3, stride=1, dilation=4))
        self.EB3.append(nn.Conv2d(ch * 4, ch * 4, kernel_size=3, stride=1, dilation=8))
        self.EB3.append(nn.Conv2d(ch * 4, ch * 4, kernel_size=3, stride=1, dilation=16))

        self.EB3.append(nn.Conv2d(ch * 4, ch * 4, kernel_size=3, stride=1))
        self.EB3.append(nn.Conv2d(ch * 4, ch * 4, kernel_size=3, stride=1))

        self.EB3.append(PureUpsampling(scale=2, mode='nearest'))
        self.EB3.append(nn.Conv2d(ch * 4, ch * 2, kernel_size=3, stride=1))
        self.EB3.append(nn.Conv2d(ch * 2, ch * 2, kernel_size=3, stride=1))
        self.EB3.append(PureUpsampling(scale=2, mode='nearest'))
        self.EB3.append(nn.Conv2d(ch * 2, ch, kernel_size=3, stride=1))
        self.EB3.append(nn.Conv2d(ch, ch, kernel_size=3, stride=1))

        self.EB3_pad_rec = [1, 1, 1, 1, 1, 1, 2, 4, 8, 16, 1, 1, 0, 1, 1, 0, 1, 1]

        self.decoding_layers.append(nn.Conv2d(ch * 7, ch // 2, kernel_size=3, stride=1))
        self.decoding_layers.append(nn.Conv2d(ch // 2, out_channels, kernel_size=3, stride=1))

        self.decoding_pad_rec = [1, 1]

        self.EB1 = nn.ModuleList(self.EB1)#将列表模块连接组合成网络结构
        self.EB2 = nn.ModuleList(self.EB2)
        self.EB3 = nn.ModuleList(self.EB3)
        self.decoding_layers = nn.ModuleList(self.decoding_layers)

        # padding operations
        padlen = 49
        self.pads = [0] * padlen
        for i in range(padlen):
            self.pads[i] = nn.ReflectionPad2d(i)
        self.pads = nn.ModuleList(self.pads)

    def forward(self, x):#将一张图片复制三份,分别送入三个分支
        x1, x2, x3 = x, x, x
        for i, layer in enumerate(self.EB1):
            pad_idx = self.EB1_pad_rec[i]
            x1 = layer(self.pads[pad_idx](x1))#对特征图外围进行padding,然后进行卷积操作
            if self.using_norm:
                x1 = self.norm(x1)
            if pad_idx != 0:
                x1 = self.act(x1)#分支1的特征图结果

        for i, layer in enumerate(self.EB2):
            pad_idx = self.EB2_pad_rec[i]
            x2 = layer(self.pads[pad_idx](x2))
            if self.using_norm:
                x2 = self.norm(x2)
            if pad_idx != 0:
                x2 = self.act(x2)#分支2的特征图结果

        for i, layer in enumerate(self.EB3):
            pad_idx = self.EB3_pad_rec[i]
            x3 = layer(self.pads[pad_idx](x3))
            if self.using_norm:
                x3 = self.norm(x3)
            if pad_idx != 0:
                x3 = self.act(x3)#分支3的特征图结果

        x_d = torch.cat((x1, x2, x3), 1)#wm,将三个分支的结果cat一起

        #wm,经过编码器
        x_d = self.act(self.decoding_layers[0](self.pads[self.decoding_pad_rec[0]](x_d)))
        x_d = self.decoding_layers[1](self.pads[self.decoding_pad_rec[1]](x_d))
        x_out = torch.clamp(x_d, -1, 1)#wm,将值限制在-1,到1之间

        return x_out#返回的是一个batch_size的图片数据,数据类型是tensor,值的范围在(-1,1)


# return one dimensional output indicating the probability of realness or fakeness
#2.基础鉴别器模块
class Discriminator(BaseNet):
    def __init__(self, in_channels, cnum=32, fc_channels=8*8*32*4, act=F.elu, norm=None, spectral_norm=True):
        super(Discriminator, self).__init__()
        self.act = act
        self.norm = norm
        self.embedding = None
        self.logit = None

        ch = cnum
        self.layers = []
        if spectral_norm:
            self.layers.append(SpectralNorm(nn.Conv2d(in_channels, ch, kernel_size=5, padding=2, stride=2)))
            self.layers.append(SpectralNorm(nn.Conv2d(ch, ch * 2, kernel_size=5, padding=2, stride=2)))
            self.layers.append(SpectralNorm(nn.Conv2d(ch * 2, ch * 4, kernel_size=5, padding=2, stride=2)))
            self.layers.append(SpectralNorm(nn.Conv2d(ch * 4, ch * 4, kernel_size=5, padding=2, stride=2)))
            self.layers.append(SpectralNorm(nn.Linear(fc_channels, 1)))#返回一个标量,代表对图片的打分,对真实的图片打的高,对修复的图打分低
        else:
            self.layers.append(nn.Conv2d(in_channels, ch, kernel_size=5, padding=2, stride=2))
            self.layers.append(nn.Conv2d(ch, ch * 2, kernel_size=5, padding=2, stride=2))
            self.layers.append(nn.Conv2d(ch*2, ch*4, kernel_size=5, padding=2, stride=2))
            self.layers.append(nn.Conv2d(ch*4, ch*4, kernel_size=5, padding=2, stride=2))
            self.layers.append(nn.Linear(fc_channels, 1))#返回一个标量,代表对图片的打分,对真实的图片打的高,对修复的图打分低

        self.layers = nn.ModuleList(self.layers)#将列表里面的模块连接组合成网络结构

    def forward(self, x):
        for layer in self.layers[:-1]:
            x = layer(x)
            if self.norm is not None:
                x = self.norm(x)
            x = self.act(x)
        self.embedding = x.view(x.size(0), -1)#将卷积得到的特征图展成一维向量

        self.logit = self.layers[-1](self.embedding)
        return self.logit#返回一个标量,代表对图片的打分,对真实的图片打的高,对修复的图打分低



#3综合鉴别器,利用基础鉴别器模块,将全局鉴别器和局部鉴别器组合在一起,区别在于特征图的尺寸不同,即最后一层展成一维向量后长度不同
class GlobalLocalDiscriminator(BaseNet):
    def __init__(self, in_channels, cnum=32, g_fc_channels=16*16*32*4, l_fc_channels=8*8*32*4, act=F.elu, norm=None,
                 spectral_norm=True):
        super(GlobalLocalDiscriminator, self).__init__()
        self.act = act
        self.norm = norm

        self.global_discriminator = Discriminator(in_channels=in_channels, fc_channels=g_fc_channels, cnum=cnum,
                                                  act=act, norm=norm, spectral_norm=spectral_norm)
        self.local_discriminator = Discriminator(in_channels=in_channels, fc_channels=l_fc_channels, cnum=cnum,
                                                 act=act, norm=norm, spectral_norm=spectral_norm)

    def forward(self, x_g, x_l):
        x_global = self.global_discriminator(x_g)
        x_local = self.local_discriminator(x_l)
        return x_global, x_local#放回的是全局鉴别器的得分,局部鉴别器的得分


from util.utils import generate_mask


#4.利用前面的模块,组合成GMCNN的修复模型
class InpaintingModel_GMCNN(BaseModel):
    def __init__(self, in_channels, act=F.elu, norm=None, opt=None):
        super(InpaintingModel_GMCNN, self).__init__()
        self.opt = opt
        self.init(opt)
        #得到一个计算损失的掩码权重,完好处的像素的掩码处权重较大,缺失区域的掩码权重相对较小,呈高斯形状
        self.confidence_mask_layer = ConfidenceDrivenMaskLayer()
        #实例化一个修复器
        self.netGM = GMCNN(in_channels, out_channels=3, cnum=opt.g_cnum, act=act, norm=norm).cuda() #wm,三个平行网络+一个解码器,并放到cuda上

        init_weights(self.netGM)#wm,初始化网络

        self.model_names = ['GM']
        if self.opt.phase == 'test':
            return

        self.netD = None
        #wm,将生成器的网络参数,放入Adam优化器中
        self.optimizer_G = torch.optim.Adam(self.netGM.parameters(), lr=opt.lr, betas=(0.5, 0.9))
        self.optimizer_D = None

        self.wganloss = None
        self.recloss = nn.L1Loss()
        self.aeloss = nn.L1Loss()
        self.mrfloss = None

        self.lambda_adv = opt.lambda_adv#生成对抗损失权重的超参数
        self.lambda_rec = opt.lambda_rec#重建损失的超参数
        self.lambda_ae = opt.lambda_ae
        self.lambda_gp = opt.lambda_gp#w-gan的中超参数
        self.lambda_mrf = opt.lambda_mrf#mrf损失的权重超参数

        self.G_loss = None
        self.G_loss_reconstruction = None
        self.G_loss_mrf = None
        self.G_loss_adv, self.G_loss_adv_local = None, None
        self.G_loss_ae = None
        self.D_loss, self.D_loss_local = None, None
        self.GAN_loss = None

        self.gt, self.gt_local = None, None
        self.mask, self.mask_01 = None, None
        self.rect = None

        self.im_in, self.gin = None, None

        self.completed, self.completed_local = None, None
        self.completed_logit, self.completed_local_logit = None, None
        self.gt_logit, self.gt_local_logit = None, None

        self.pred = None

        #wm,如果不是对模型进行预训练,需要实例化一个鉴别器网络,这里的预训练指的是对模型仅仅用重建损失进行预训练:
        if self.opt.pretrain_network is False:
            if self.opt.mask_type == 'rect':
                self.netD = GlobalLocalDiscriminator(3, cnum=opt.d_cnum, act=act,
                                                     g_fc_channels=opt.img_shapes[0]//16*opt.img_shapes[1]//16*opt.d_cnum*4,
                                                     l_fc_channels=opt.mask_shapes[0]//16*opt.mask_shapes[1]//16*opt.d_cnum*4,
                                                     spectral_norm=self.opt.spectral_norm).cuda()
            else:
                self.netD = GlobalLocalDiscriminator(3, cnum=opt.d_cnum, act=act,
                                                     spectral_norm=self.opt.spectral_norm,
                                                     g_fc_channels=opt.img_shapes[0]//16*opt.img_shapes[1]//16*opt.d_cnum*4,
                                                     l_fc_channels=opt.img_shapes[0]//16*opt.img_shapes[1]//16*opt.d_cnum*4).cuda()
            init_weights(self.netD)#初始化鉴别器
            self.optimizer_D = torch.optim.Adam(filter(lambda x: x.requires_grad, self.netD.parameters()), lr=opt.lr,
                                                betas=(0.5, 0.9))#将鉴别器的网络参数放到Adam优化器中
            self.wganloss = WGANLoss()#实例化WGAN损失
            self.mrfloss = IDMRFLoss()#实例化IDMRF损失

    #初始化各种变量,并获得输入生成器网络的输入图片数据
    def initVariables(self):
        self.gt = self.input['gt']#获取一个batch_size的真图
        mask, rect = generate_mask(self.opt.mask_type, self.opt.img_shapes, self.opt.mask_shapes)#wm,生成掩码,和矩形空洞的位置
        self.mask_01 = torch.from_numpy(mask).cuda().repeat([self.opt.batch_size, 1, 1, 1])#0代表完好区域,1代表缺失区域,从numpy格式转换成tensor
        self.mask = self.confidence_mask_layer(self.mask_01)#掩码权重参数,用来计算重建损失时用的

        if self.opt.mask_type == 'rect':
            self.rect = [rect[0, 0], rect[0, 1], rect[0, 2], rect[0, 3]]
            #用来得到局部的真实图
            self.gt_local = self.gt[:, :, self.rect[0]:self.rect[0] + self.rect[1],self.rect[2]:self.rect[2] + self.rect[3]]
        else:
            self.gt_local = self.gt

        self.im_in = self.gt * (1 - self.mask_01)#只有完好区域为原始的真实值,空洞区域的值为0
        self.gin = torch.cat((self.im_in, self.mask_01), 1)#这是最开始输入修复网络中的图片数据,4个通道

    #前向计算生成器,得到生成器的各种损失
    def forward_G(self):
        self.G_loss_reconstruction = self.recloss(self.completed * self.mask, self.gt.detach() * self.mask)#计算最终修复的结果和真实图的损失,并用了掩码权重
        self.G_loss_reconstruction = self.G_loss_reconstruction / torch.mean(self.mask_01)

        self.G_loss_ae = self.aeloss(self.pred * (1 - self.mask_01), self.gt.detach() * (1 - self.mask_01))#计算原本完好区域和预测出的完好区域的损失
        self.G_loss_ae = self.G_loss_ae / torch.mean(1 - self.mask_01)

        self.G_loss = self.lambda_rec * self.G_loss_reconstruction + self.lambda_ae * self.G_loss_ae#给重建损失乘以相关权重系数

        if self.opt.pretrain_network is False:#如果不是预训练,那么还得计算生成对抗损失和ID-MRF损失
            # discriminator
            self.completed_logit, self.completed_local_logit = self.netD(self.completed, self.completed_local)#获取鉴别器网络对修复的图的全局打分和局部打分

            self.G_loss_mrf = self.mrfloss((self.completed_local+1)/2.0, (self.gt_local.detach()+1)/2.0)#计算ID-MRF损失
            self.G_loss = self.G_loss + self.lambda_mrf * self.G_loss_mrf#生成器的损失加上ID-MRF损失

            self.G_loss_adv = -self.completed_logit.mean()#生成对抗的全局损失
            self.G_loss_adv_local = -self.completed_local_logit.mean()#生成对抗的局部损失
            self.G_loss = self.G_loss + self.lambda_adv * (self.G_loss_adv + self.G_loss_adv_local)#总的损失


    # 前向计算鉴别器,得到鉴别器的各种损失
    def forward_D(self):
        self.completed_logit, self.completed_local_logit = self.netD(self.completed.detach(), self.completed_local.detach())#d对修复图片的全局和局部鉴别打分
        self.gt_logit, self.gt_local_logit = self.netD(self.gt, self.gt_local)#对真实图片全局和局部的鉴别打分
        # hinge loss
        self.D_loss_local = nn.ReLU()(1.0 - self.gt_local_logit).mean() + nn.ReLU()(1.0 + self.completed_local_logit).mean()#对局部图片的鉴别器的损失
        self.D_loss = nn.ReLU()(1.0 - self.gt_logit).mean() + nn.ReLU()(1.0 + self.completed_logit).mean()#对全局图片鉴别器的损失

        self.D_loss = self.D_loss + self.D_loss_local

    #反向传播计算生成器的梯度
    def backward_G(self):
        self.G_loss.backward()
    #反向传播计算鉴别器的梯度
    def backward_D(self):
        self.D_loss.backward(retain_graph=True)


    #进行数据流的正向流动
    def optimize_parameters(self):
        self.initVariables()

        self.pred = self.netGM(self.gin)#将破损图片送入修复网络中进行修复,得到预测结果
        self.completed = self.pred * self.mask_01 + self.gt * (1 - self.mask_01)#将预测得到的图片,完好区域用以前的真值进行替换,那么就得到了最终的修复结果

        if self.opt.mask_type == 'rect':
            self.completed_local = self.completed[:, :, self.rect[0]:self.rect[0] + self.rect[1],
                                   self.rect[2]:self.rect[2] + self.rect[3]]
        else:
            self.completed_local = self.completed

        if self.opt.pretrain_network is False:#如果不是预训练阶段的仅仅用重建损失训练生成器网络,那么还有生成对抗损失
            for i in range(self.opt.D_max_iters):
                self.optimizer_D.zero_grad()#鉴别器网络的梯度清为0
                self.optimizer_G.zero_grad()#生成器网络的梯度清为0
                self.forward_D()#正向传播鉴别器
                self.backward_D()#反向传播
                self.optimizer_D.step()#更新鉴别器的网络参数

        self.optimizer_G.zero_grad()#生成器网络的梯度清为0
        self.forward_G()#生成器正向传播
        self.backward_G()#生成器反向传播
        self.optimizer_G.step()#更新生成器的网络参数

    #返回当前所有的损失,采用字典结构数据进行返回
    def get_current_losses(self):
        l = {'G_loss': self.G_loss.item(), 'G_loss_rec': self.G_loss_reconstruction.item(),
             'G_loss_ae': self.G_loss_ae.item()}#如果是预训练阶段只有重建损失

        if self.opt.pretrain_network is False:
            l.update({'G_loss_adv': self.G_loss_adv.item(),
                      'G_loss_adv_local': self.G_loss_adv_local.item(),
                      'D_loss': self.D_loss.item(),
                      'G_loss_mrf': self.G_loss_mrf.item()})
        return l

    #得到当前的网络输入图片,真实图片,最终修复得到的图片,图片的数据是tensor格式
    def get_current_visuals(self):
        return {'input': self.im_in.cpu().detach().numpy(), 'gt': self.gt.cpu().detach().numpy(),
                'completed': self.completed.cpu().detach().numpy()}

    #得到当前的网络输入图片,真实图片,最终修复得到的图片,图片的数据是tensor格式
    def get_current_visuals_tensor(self):
        return {'input': self.im_in.cpu().detach(), 'gt': self.gt.cpu().detach(),
                'completed': self.completed.cpu().detach()}


    #对图片进行评估
    def evaluate(self, im_in, mask):
        im_in = torch.from_numpy(im_in).type(torch.FloatTensor).cuda() / 127.5 - 1
        mask = torch.from_numpy(mask).type(torch.FloatTensor).cuda()
        im_in = im_in * (1-mask)
        xin = torch.cat((im_in, mask), 1)
        ret = self.netGM(xin) * mask + im_in * (1-mask)
        ret = (ret.cpu().detach().numpy() + 1) * 127.5
        return ret.astype(np.uint8)

3.4一些常用的loss.py,包括有ID-MRF loss

import torch
import torch.nn as nn
import torch.autograd as autograd
import torch.nn.functional as F
from model.layer import VGG19FeatLayer
from functools import reduce

class WGANLoss(nn.Module):
    def __init__(self):
        super(WGANLoss, self).__init__()

    def __call__(self, input, target):
        d_loss = (input - target).mean()
        g_loss = -input.mean()
        return {'g_loss': g_loss, 'd_loss': d_loss}


def gradient_penalty(xin, yout, mask=None):
    gradients = autograd.grad(yout, xin, create_graph=True,
                              grad_outputs=torch.ones(yout.size()).cuda(), retain_graph=True, only_inputs=True)[0]
    if mask is not None:
        gradients = gradients * mask
    gradients = gradients.view(gradients.size(0), -1)
    gp = ((gradients.norm(2, dim=1) - 1) ** 2).mean()
    return gp


def random_interpolate(gt, pred):
    batch_size = gt.size(0)
    alpha = torch.rand(batch_size, 1, 1, 1).cuda()
    # alpha = alpha.expand(gt.size()).cuda()
    interpolated = gt * alpha + pred * (1 - alpha)
    return interpolated


class IDMRFLoss(nn.Module):
    def __init__(self, featlayer=VGG19FeatLayer):
        super(IDMRFLoss, self).__init__()
        self.featlayer = featlayer()
        self.feat_style_layers = {'relu3_2': 1.0, 'relu4_2': 1.0}
        self.feat_content_layers = {'relu4_2': 1.0}
        self.bias = 1.0
        self.nn_stretch_sigma = 0.5
        self.lambda_style = 1.0
        self.lambda_content = 1.0

    def sum_normalize(self, featmaps):
        reduce_sum = torch.sum(featmaps, dim=1, keepdim=True)
        return featmaps / reduce_sum

    def patch_extraction(self, featmaps):
        patch_size = 1
        patch_stride = 1
        patches_as_depth_vectors = featmaps.unfold(2, patch_size, patch_stride).unfold(3, patch_size, patch_stride)
        self.patches_OIHW = patches_as_depth_vectors.permute(0, 2, 3, 1, 4, 5)
        dims = self.patches_OIHW.size()
        self.patches_OIHW = self.patches_OIHW.view(-1, dims[3], dims[4], dims[5])
        return self.patches_OIHW

    def compute_relative_distances(self, cdist):
        epsilon = 1e-5
        div = torch.min(cdist, dim=1, keepdim=True)[0]
        relative_dist = cdist / (div + epsilon)
        return relative_dist

    def exp_norm_relative_dist(self, relative_dist):
        scaled_dist = relative_dist
        dist_before_norm = torch.exp((self.bias - scaled_dist)/self.nn_stretch_sigma)
        self.cs_NCHW = self.sum_normalize(dist_before_norm)
        return self.cs_NCHW

    def mrf_loss(self, gen, tar):
        meanT = torch.mean(tar, 1, keepdim=True)
        gen_feats, tar_feats = gen - meanT, tar - meanT

        gen_feats_norm = torch.norm(gen_feats, p=2, dim=1, keepdim=True)
        tar_feats_norm = torch.norm(tar_feats, p=2, dim=1, keepdim=True)

        gen_normalized = gen_feats / gen_feats_norm
        tar_normalized = tar_feats / tar_feats_norm

        cosine_dist_l = []
        BatchSize = tar.size(0)

        for i in range(BatchSize):
            tar_feat_i = tar_normalized[i:i+1, :, :, :]
            gen_feat_i = gen_normalized[i:i+1, :, :, :]
            patches_OIHW = self.patch_extraction(tar_feat_i)

            cosine_dist_i = F.conv2d(gen_feat_i, patches_OIHW)
            cosine_dist_l.append(cosine_dist_i)
        cosine_dist = torch.cat(cosine_dist_l, dim=0)
        cosine_dist_zero_2_one = - (cosine_dist - 1) / 2
        relative_dist = self.compute_relative_distances(cosine_dist_zero_2_one)
        rela_dist = self.exp_norm_relative_dist(relative_dist)
        dims_div_mrf = rela_dist.size()
        k_max_nc = torch.max(rela_dist.view(dims_div_mrf[0], dims_div_mrf[1], -1), dim=2)[0]
        div_mrf = torch.mean(k_max_nc, dim=1)
        div_mrf_sum = -torch.log(div_mrf)
        div_mrf_sum = torch.sum(div_mrf_sum)
        return div_mrf_sum

    def forward(self, gen, tar):
        gen_vgg_feats = self.featlayer(gen)
        tar_vgg_feats = self.featlayer(tar)

        style_loss_list = [self.feat_style_layers[layer] * self.mrf_loss(gen_vgg_feats[layer], tar_vgg_feats[layer]) for layer in self.feat_style_layers]
        self.style_loss = reduce(lambda x, y: x+y, style_loss_list) * self.lambda_style
        #reduce函数会对元素进行积累
        content_loss_list = [self.feat_content_layers[layer] * self.mrf_loss(gen_vgg_feats[layer], tar_vgg_feats[layer]) for layer in self.feat_content_layers]
        self.content_loss = reduce(lambda x, y: x+y, content_loss_list) * self.lambda_content

        return self.style_loss + self.content_loss


class StyleLoss(nn.Module):
    def __init__(self, featlayer=VGG19FeatLayer, style_layers=None):
        super(StyleLoss, self).__init__()
        self.featlayer = featlayer()
        if style_layers is not None:
            self.feat_style_layers = style_layers
        else:
            self.feat_style_layers = {'relu2_2': 1.0, 'relu3_2': 1.0, 'relu4_2': 1.0}

    def gram_matrix(self, x):
        b, c, h, w = x.size()
        feats = x.view(b * c, h * w)
        g = torch.mm(feats, feats.t())
        return g.div(b * c * h * w)

    def _l1loss(self, gen, tar):
        return torch.abs(gen-tar).mean()

    def forward(self, gen, tar):
        gen_vgg_feats = self.featlayer(gen)
        tar_vgg_feats = self.featlayer(tar)
        style_loss_list = [self.feat_style_layers[layer] * self._l1loss(self.gram_matrix(gen_vgg_feats[layer]), self.gram_matrix(tar_vgg_feats[layer])) for
                           layer in self.feat_style_layers]
        style_loss = reduce(lambda x, y: x + y, style_loss_list)
        return style_loss


class ContentLoss(nn.Module):
    def __init__(self, featlayer=VGG19FeatLayer, content_layers=None):
        super(ContentLoss, self).__init__()
        self.featlayer = featlayer()
        if content_layers is not None:
            self.feat_content_layers = content_layers
        else:
            self.feat_content_layers = {'relu4_2': 1.0}

    def _l1loss(self, gen, tar):
        return torch.abs(gen-tar).mean()

    def forward(self, gen, tar):
        gen_vgg_feats = self.featlayer(gen)
        tar_vgg_feats = self.featlayer(tar)
        content_loss_list = [self.feat_content_layers[layer] * self._l1loss(gen_vgg_feats[layer], tar_vgg_feats[layer]) for
                             layer in self.feat_content_layers]
        content_loss = reduce(lambda x, y: x + y, content_loss_list)
        return content_loss


class TVLoss(nn.Module):
    def __init__(self):
        super(TVLoss, self).__init__()

    def forward(self, x):
        h_x, w_x = x.size()[2:]
        h_tv = torch.abs(x[:, :, 1:, :] - x[:, :, :h_x-1, :])
        w_tv = torch.abs(x[:, :, :, 1:] - x[:, :, :, :w_x-1])
        loss = torch.sum(h_tv) + torch.sum(w_tv)
        return loss

4参考文献

4.1原论文

Image Inpainting via Generative Multi-column
Convolutional Neural Networks

4.2源码

https://github.com/shepnerd/inpainting_gmcnn

上一篇:【论文笔记】Pyramidal Convolution: Rethinking Convolutional Neural Networks for Visual Recognition


下一篇:细粒度 - Attention Convolutional Binary Neural Tree for Fine-Grained Visual Categorization - 1 - 论文学习