MongoDB(课时29 MapReduce)

3.7.4 MapReduce

MapReduce 是整个大数据的精髓所在(实际中别用,因为在MongoDB中属于最底层操作)。

MapReduce是一种计算模型,简单的说就是将大批量的工作分解执行,然后再将结果合并成最终结果。

MapReduce 就是分为两步处理数据:

  • Map:将数据分别取出
  • Reduce:负责数据的最后的处理

范例:建立一组雇员数据

db.emps.insert({"name": "张三", "age": , "sex": "男", "job": "CLERK", "salary": });
db.emps.insert({"name": "李四", "age": , "sex": "女", "job": "CLERK", "salary": });
db.emps.insert({"name": "王五", "age": , "sex": "男", "job": "MANAGER", "salary": });
db.emps.insert({"name": "赵六", "age": , "sex": "女", "job": "MANAGER", "salary": });
db.emps.insert({"name": "孙七", "age": , "sex": "男", "job": "CLERK", "salary": });
db.emps.insert({"name": "王八", "age": , "sex": "女", "job": "PRESIDENT", "salary": });

范例:按照职位分组,取得每个职位的人名

第一步:编写分组的定义(即Map函数):

    var jobMapFun = function(){

      emit(this.job, this.name);   //emit()函数表示每行数据按照job分组,取出name

    }; 

分析:

  • Map函数调用emit(key, value),遍历emps中所有的记录,将key与value传递给Reduce函数进行处理,
  • Map函数必须调用emit(key, value)返回的键值对。
  • emit()函数是按数据的分组走,比如第一组:{key : "CLERK", values : [姓名, 姓名,...]}

第二步:编写 reduce 操作:

    var jobReduceFun = function(key, values){

      return {"job": key, "names": values};

    }  

分析:reduce统计函数,reduce函数的任务是将key-values变为key-value,也就是把values数组变为一个单一的值value。

第三步:进行操作的整合:

db.runCommand({
"mapreduce": "emps",
"map": jobMapFun,
"reduce": jobReduceFun,
"out": "t_job_emp"
});

分析:out:统计结果存放集合(不指定则使用临时集合,在客户端断开后自动删除)

MongoDB(课时29 MapReduce)

执行后所有结果都保存在"t_job_emp"集合里面。

MongoDB(课时29 MapReduce)

或者将上面第三步换成如下第三步和第四步

第三步:针对MapReduce处理完成的数据实际上也可以执行一个最后的处理

var jobFinalizeFun = function(key, values){
if(key == "PRESIDENT"){
return {"job": key, "names": values, "info": "公司的老大"};
}
return {"job": key, "names": values};
}

第四步:进行操作的整合

db.runCommand({
"mapreduce": "emps",
"map": jobMapFun,
"reduce": jobReduceFun,
"out": "t_job_emp",
"finalize": jobFinalizeFun
});

现在执行之后,所有的处理结果都保存在 “t_job_emp” 集合里面,通过如下命令查看

db.t_job_emp.find()

MongoDB(课时29 MapReduce)

MongoDB(课时29 MapReduce)

范例:统计出性别的人数、平均工资、最低工资、雇员姓名。

var sexMapFun = function(){
  // 定义好了分组的条件,以及每个集合要取出的内容
  emit(this.sex, {"ccount" : , "csal" : this.salary, "cmax" : this.salary, "cmin" : this.salary, "cname" : this.name})
}
var sexReduceFun = function(key, values){
  var total = ;  //统计
  var sum = ;  //计算总工资
  var max = values[].cmax;  //假设第一个数据是最高工资
  var min = values[].cmin;  //假设第一个数据是最低工资
  for (var x in values){      // 表示循环取出里面的数据
    total += values[x].ccount;  //人数增加
    sum += values[x].csal;    //就可以循环取出所有的工资,并且累加
    if (max < values[x].cmax){  //不是最高工资
      max = values[x].cmax;
    }
    if (min > values[x].cmin){  //不是最低工资
      min = values[x].cmin;
    }
    names[x] = values[x].cname  //保存姓名
  }
  var avg = (sum / total).toFixed();  //toFixed(2)设置成两位小数
  //返回数据的处理结果
  return {"count" : total, "avg" : avg, "sum" : sum, "max" : max, "min" : min, "names" : names};
}
db.runCommand({
  "mapreduce" : "emps",
  "map" : sexMapFun,
  "reduce" : sexReduceFun,
  "out" : "t_sex_emp"
})

现在执行之后,所有的处理结果都保存在“t_sex_emp”集合里面,通过如下命令查看:

db.t_sex_emp.find()
上一篇:ubuntu linux 设置环境变量


下一篇:ListView添加item的事件监听