洛谷 UVA1328 Period
题目描述
输入格式
无
输出格式
无
题意翻译
题意描述
对于给定字符串S的每个前缀,我们想知道它是否为周期串。也就还是说,它是否为某一字符串重复连接而成(必须至少重复2次)(即循环节)。
输入
多组数据。每组数据,第一行一个数字表示长度,第二行一个字符串S。
输出
输出前缀长度与循环节数量。
说明
字符串长度不超过1000000,仅由小写字母组成。 对于每个前缀,只要输出长度最小的循环节
输入输出样例
无
一道KMP算法的练手好题。
大体的题目大意是这样的:
题目大意:
如果一个字符串S是由一个字符串T重复K次形成的,则称T是S的循环元。使K最大的字符串T称为S的最小循环元,此时的K称为最大循环次数。
现给一个给定长度为N的字符串S,对S的每一个前缀S[1~i],如果它的最大循环次数大于1,则输出该前缀的最小循环元长度和最大循环次数。
题解:
一道KMP算法的题目,如果对KMP算法还是没有什么深刻的理解或者还没学KMP算法的,请移步我的这篇博客,讲解还算详细:
一开始拿到题没什么思路(我还是太菜了)
后来发现,对给出的串\(S\)自匹配求出\(nxt\)数组之后,对于每一个\(i\),一定会有这么一个结论:
\[
S[1\,\,to\,\,nxt[i]]=S[i-nxt[i]+1\,\,to\,\,i]
\]
这是通过KMP算法对\(nxt\)数组的定义得来的。
那么,既然这两个东西是相等的,那么在对这个子串进行匹配的时候,这个循环节长度就应该是\(i-nxt[i]\),然后循环次数当然就是\(i/(i-nxt[i])\),当然,前提需要是\(i\%(i-nxt[i])==0\)。
代码如下:
#include<cstdio>
using namespace std;
const int maxl=1e6+10;
int n,tot;
char s[maxl];
int nxt[maxl];
int main()
{
while(~scanf("%d",&n) && n)
{
scanf("%s",s+1);
tot++;
printf("Test case #%d\n",tot);
nxt[1]=0;
for(int i=2,j=0;i<=n;++i)
{
while(s[i]!=s[j+1] && j)
j=nxt[j];
if(s[i]==s[j+1])
j++;
nxt[i]=j;
if(nxt[i]!=0 && i%(i-nxt[i])==0)
printf("%d %d\n",i,i/(i-nxt[i]));
}
printf("\n");
}
return 0;
}