CenterX 目标检测新网络(已开源)

作者:CPFLAME
项目代码:https://github.com/CPFLAME/centerX
项目介绍:https://zhuanlan.zhihu.com/p/323814368

CenterX 目标检测新网络(已开源)

CenterX

This repo is implemented based on detectron2 and CenterNet

What’s new

  • Support imgaug data augmentation
  • Support swa
  • Support Knowledge Distill, teacher-student, designed by myself
  • Support other LR_SCHEDULER
  • Support Optimizer RangerLars, not convergence in COCO
  • We provide some examples and scripts to convert centerX to Caffe, ONNX and TensorRT format in projects/speedup

What’s comming

  • [️✔] Support simple inference
  • [✔] Support to caffe, onnx, tensorRT
  • Support keypoints

Requirements

  • Python >= 3.7
  • PyTorch >= 1.5
  • torchvision that matches the PyTorch installation.
  • OpenCV
  • pycocotools
pip install cython; pip install 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
  • GCC >= 4.9
gcc --version
  • detectron2
pip install -U 'git+https://github.com/CPFLAME/detectron2.git'
pip install git+https://github.com/pabloppp/pytorch-tools -U

Data prepare

the same as detectron2

Training

modify your yamls in run.sh

sh run.sh

Testing and Evaluation

modify your yamls in run.sh,
add eval-only and MODEL.WEIGHTS in your setting

sh run.sh

Performance

coco

This repo use less training time to get a competitive performance compared to other versions

Backbone ResNet-50

Code mAP epoch
centerX 33.2 70
centerX 34.3 140
centernet-better 34.9 140

Backbone ResNet-18

centerX_KD means ResNet-50(33.2) as teacher, ResNet-18(27.9) as student, Knowledge Distill for 70 epoch in coco.

Code mAP epoch
centerX 30.2 140
centerX 27.9 70
centerX_KD 31.0 70
centernet-better 29.8 140
centernet 28.1 140

crowd human

  • optim: SGD
  • lr: 0.02
  • scheduler: WarmupMultiStepLR ,drop 0.1 in (50, 62) for 80 epoch; (90 ,120) for 140 epoch
  • train size: 512 max size
  • test size: 512 max size
  • batch size: 64
  • woGT: KD only use teacher loss
Backbone mAP mAP50 mAP75 epoch teacher student_pretrain
resdcn18 31.2 56.6 30.8 80 - -
resdcn18_swa 31.1 56.6 30.4 80 - -
resdcn18_syncBN 31.3 56.6 30.7 80 - -
resdcn18_imgaug 29.6 54.7 28.9 80 - -
resdcn18_KD 34.5 60.2 34.3 80 resdcn50 resdcn18
resdcn18_KD_woGT 33.0 58.3 32.7 80 resdcn50 resdcn18
resdcn18_KD_woGT_scratch 32.8 58.1 32.6 140 resdcn50 imagenet
resdcn50 35.1 61.2 35.3 80 - -

KD exp

crowd human KD

Generalization performance for Knowledge Distill

Backbone crowd mAP coco_person mAP epoch teacher student_pretrain train_set
resdcn50 35.1 35.7 80 - - crowd
resdcn18(baseline) 31.2 31.2 80 - - crowd
resdcn18_KD 34.5 34.9 80 resdcn50 resdcn18 crowd
resdcn18_KD_woGT_scratch 32.8 34.2 140 resdcn50 imagenet crowd
resdcn18_KD_woGT_scratch 34.1 36.3 140 resdcn50 imagenet crowd+coco

multi teacher KD

Backbone mAP crowd mAP coco_car epoch teacher student_pretrain train_set
1.resdcn50 35.1 - 80 - - crowd
2.resdcn18 31.7 - 70 - - crowd
3.resdcn50 - 31.6 70 - - coco_car
4.resdcn18 - 27.8 70 - - coco_car
resdcn18_KD_woGT_scratch 31.6 29.4 140 1,3 imagenet crowd+coco_car
Backbone mAP crowd_human mAP widerface epoch teacher student_pretrain train_set
1.resdcn50 35.1 - 80 - - crowd
2.resdcn18 31.7 - 70 - - crowd
3.resdcn50 - 32.9 70 - - widerface
4.resdcn18 - 29.6 70 - - widerface
5.resdcn18_ignore_nolabel 29.1 24.2 140 - - crowd+wider
6.resdcn18_pseudo_label 28.9 27.7 140 - - crowd+wider
7.resdcn18_KD_woGT_scratch 31.3 32.1 140 1,3 imagenet crowd+wider

License

centerX is released under the Apache 2.0 license.

Acknowledgement

上一篇:统计学习方法---K-近邻(kd树实现)


下一篇:Python 列表 排序