Hadoop基础知识面试题整理

一、 问答题

1、简单描述如何安装配置一个apache开源版hadoop,只描述即可,无需列出完整步骤,能列出步骤更好。

1) 安装JDK并配置环境变量(/etc/profile)

2) 关闭防火墙

3) 配置hosts文件,方便hadoop通过主机名访问(/etc/hosts)

4) 设置ssh免密码登录

5) 解压缩hadoop安装包,并配置环境变量

6) 修改配置文件($HADOOP_HOME/conf)

hadoop-env.sh core-site.xml hdfs-site.xml mapred-site.xml

7) 格式化hdfs文件系统 (hadoop namenode -format)

8) 启动hadoop ($HADOOP_HOME/bin/start-all.sh)

9) 使用jps查看进程

2、请列出正常工作的hadoop集群中hadoop都分别需要启动那些进程,他们的作用分别是什么,尽可能写的全面些。

1) NameNode: HDFS的守护进程,负责记录文件是如何分割成数据块,以及这些数据块分别被存储到那些数据节点上,它的主要功能是对内存及IO进行集中管理。

Hadoop基础知识面试题整理

2) Secondary NameNode:辅助后台程序,与NameNode进行通信,以便定期保存HDFS元数据的快照。

3) DataNode:负责把HDFS数据块读写到本地的文件系统。

4) JobTracker:负责分配task,并监控所有运行的task。

5) TaskTracker:负责执行具体的task,并与JobTracker进行交互。

3、请列出你所知道的hadoop调度器,并简要说明其工作方法。

比较流行的三种调度器有:默认调度器FIFO,计算能力调度器Capacity Scheduler,公平调度器Fair Scheduler

1) 默认调度器FIFO

hadoop中默认的调度器,采用先进先出的原则

2) 计算能力调度器Capacity Scheduler

选择占用资源小,优先级高的先执行

3) 公平调度器Fair Scheduler

同一队列中的作业公平共享队列中所有资源

4、Hive有那些方式保存元数据的,各有那些特点。

1) 内存数据库derby,较小,不常用

2) 本地mysql,较常用

3) 远程mysql,不常用

5、请简述hadoop怎样实现二级排序。

在hadoop中,默认情况下是按照key进行排序,如果要按照value进行排序怎么办?

有两种方法进行二次排序,分别为:buffer and in memory sort和 value-to-key conversion。

buffer and in memory sort

主要思想是:在reduce()函数中,将某个key对应的所有value保存下来,然后进行排序。 这种方法最大的缺点是:可能会造成out of memory。

value-to-key conversion

主要思想是:将key和部分value拼接成一个组合key(实现WritableComparable接口或者调setSortComparatorClass函数),这样reduce获取的结果便是先按key排序,后按value排序的结果,需要注意的是,用户需要自己实现Paritioner,以便只按照key进行数据划分。hadoop显式的支持二次排序,在Configuration类中有个setGroupingComparatorClass()方法,可用于设置排序group的key值。

6、简述hadoop实现Join的几种方法。

(1)、reduce side join

reduce side join是一种最简单的join方式,其主要思想如下:

在map阶段,map函数同时读取两个文件File1和File2,为了区分两种来源的key/value数据对,对每条数据打一个标签(tag),比如:tag=0表示来自文件File1,tag=2表示来自文件File2。即:map阶段的主要任务是对不同文件中的数据打标签。

在reduce阶段,reduce函数获取key相同的来自File1和File2文件的value list, 然后对于同一个key,对File1和File2中的数据进行join(笛卡尔乘积)。即:reduce阶段进行实际的连接操作。

(2)、map side join

之所以存在reduce side join,是因为在map阶段不能获取所有需要的join字段,即:同一个key对应的字段可能位于不同map中。Reduce side join是非常低效的,因为shuffle阶段要进行大量的数据传输。

Map side join是针对以下场景进行的优化:两个待连接表中,有一个表非常大,而另一个表非常小,以至于小表可以直接存放到内存中。这样,我们可以将小表复制多份,让每个map task内存中存在一份(比如存放到hash table中),然后只扫描大表:对于大表中的每一条记录key/value,在hash table中查找是否有相同的key的记录,如果有,则连接后输出即可。

为了支持文件的复制,Hadoop提供了一个类DistributedCache,使用该类的方法如下:

(1)用户使用静态方法DistributedCache.addCacheFile()指定要复制的文件,它的参数是文件的URI(如果是HDFS上的文件,可以这样:hdfs://namenode:9000/home/XXX/file,其中9000是自己配置的NameNode端口号)。JobTracker在作业启动之前会获取这个URI列表,并将相应的文件拷贝到各个TaskTracker的本地磁盘上。(2)用户使用DistributedCache.getLocalCacheFiles()方法获取文件目录,并使用标准的文件读写API读取相应的文件。

(3)、SemiJoin

SemiJoin,也叫半连接,是从分布式数据库中借鉴过来的方法。它的产生动机是:对于reduce side join,跨机器的数据传输量非常大,这成了join操作的一个瓶颈,如果能够在map端过滤掉不会参加join操作的数据,则可以大大节省网络IO。

实现方法很简单:选取一个小表,假设是File1,将其参与join的key抽取出来,保存到文件File3中,File3文件一般很小,可以放到内存中。在map阶段,使用DistributedCache将File3复制到各个TaskTracker上,然后将File2中不在File3中的key对应的记录过滤掉,剩下的reduce阶段的工作与reduce side join相同。

(4)、reduce side join + BloomFilter

在某些情况下,SemiJoin抽取出来的小表的key集合在内存中仍然存放不下,这时候可以使用BloomFiler以节省空间。

BloomFilter最常见的作用是:判断某个元素是否在一个集合里面。它最重要的两个方法是:add() 和contains()。最大的特点是不会存在false negative,即:如果contains()返回false,则该元素一定不在集合中,但会存在一定的true negative,即:如果contains()返回true,则该元素可能在集合中。

因而可将小表中的key保存到BloomFilter中,在map阶段过滤大表,可能有一些不在小表中的记录没有过滤掉(但是在小表中的记录一定不会过滤掉),这没关系,只不过增加了少量的网络IO而已。

7、请简述MapReduce中combiner、partition的作用

(1)、combiner

有时一个map可能会产生大量的输出,combiner的作用是在map端对输出先做一次合并,以减少网络传输到reducer的数量。

注意:mapper的输出为combiner的输入,reducer的输入为combiner的输出。

(2)、partition

把map任务输出的中间结果按照key的范围划分成R份(R是预先定义的reduce任务的个数),划分时通常使用hash函数,如:hash(key) mod R

强烈推荐阅读下列文章

一篇文章告诉你优酷背后的大数据秘密!【大数据开发实战技术】戳我阅读

从术语到Spark,10篇必读大数据学习资源戳我阅读

想成为云计算大数据Spark高手,看这里!戳我阅读

最全最新的大数据系统交流路径!!戳我阅读

年薪百万的大数据开发工程师要如何入门?戳我阅读

上一篇:ASP.NET Alerts: how to display message boxes from server-side code?


下一篇:POJ 3526 The Teacher’s Side of Math 题解《挑战程序设计竞赛》