Python之路第十二天,高级(4)-Python操作rabbitMQ

rabbitMQ

RabbitMQ是一个在AMQP基础上完整的,可复用的企业消息系统。他遵循Mozilla Public License开源协议。

MQ全称为Message Queue, 消息队列(MQ)是一种应用程序对应用程序的通信方法。应用程序通过读写出入队列的消息(针对应用程序的数据)来通信,而无需专用连接来链接它们。消 息传递指的是程序之间通过在消息中发送数据进行通信,而不是通过直接调用彼此来通信,直接调用通常是用于诸如远程过程调用的技术。排队指的是应用程序通过 队列来通信。队列的使用除去了接收和发送应用程序同时执行的要求。

RabbitMQ安装

CentOS:
1.安装epel源,其实就是一个yum配置文件,可以到/etc/yum.repo.d/里查看
[root@localhost ~]# yum -y install epel-release
2.安装erlang
[root@localhost ~]# yum -y install erlang
3.安装RabbitMQ
[root@localhost]# yum -y install rabbitmq-server
4.启动/停止
[root@localhost ~]# service rabbitmq-server start/stop

PYTHON API 安装

pip3 install pika

PYTHON 操作 rabbitMQ:

对于RabbitMQ来说,生产和消费不再针对内存里的一个Queue对象,而是某台服务器上的RabbitMQ Server实现的消息队列。

最基本的生产者消费者:

生产者代码:

import pika

# 连接rabbit服务器(localhost是本机,如果是其他服务器请修改为ip地址)
connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
# 创建频道
channel = connection.channel()
# 创建一个队列名叫hello
channel.queue_declare(queue='hello')
# exchange -- 它使我们能够确切地指定消息应该到哪个队列去。
# 向队列插入数值 routing_key是队列名 body是要插入的内容 channel.basic_publish(exchange='',
routing_key='hello',
body='Hello World!')
print("发送消息到队列里")
#缓冲区已经flush而且消息已经确认发送到了RabbitMQ中,关闭链接
connection.close()

消费者代码:

import pika

# 连接接rabbit
connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
# 创建频道
channel = connection.channel()
# 如果生产者没有运行创建队列,那么消费者也许就找不到队列了。为了避免这个问题
# 所有消费者也创建这个队列,如果这个队列存在,这条语句就不起作用了
channel.queue_declare(queue='hello')
# 接收消息需要使用callback这个函数来接收,他会被pika库来调用
def callback(ch, method, properties, body):
print(" [x] Received %r" % body)
# 从队列取数据 callback是回调函数 如果拿到数据 那么将执行callback函数
channel.basic_consume(callback,
queue='hello',
no_ack=True)
print(' [*] 等待信息. To exit press CTRL+C')
# 永远循环等待数据处理和callback处理的数据
channel.start_consuming()

acknowledgment消息不丢失

no-ack = False,如果消费者遇到情况(its channel is closed, connection is closed, or TCP connection is lost)挂掉了,那么,RabbitMQ会重新将该任务添加到队列中。

生产者代码不变。

消费者:

import pika
# 链接rabbit
connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
# 创建频道
channel = connection.channel()
# 如果生产者没有运行创建队列,那么消费者创建队列
channel.queue_declare(queue='hello')
def callback(ch, method, properties, body):
print(" [x] Received %r" % body)
import time
time.sleep(10)
print 'ok'
# 主要使用此代码 手动回复ACK
ch.basic_ack(delivery_tag = method.delivery_tag) channel.basic_consume(callback,
queue='hello',
no_ack=False) print(' [*] Waiting for messages. To exit press CTRL+C')
channel.start_consuming()

durable消息不丢失(持久化)

生产者:

import pika
# 连接rabbit服务器
connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
# 创建频道
channel = connection.channel()
# 创建队列,使用durable方法
channel.queue_declare(queue='hello', durable=True)
#如果想让队列实现持久化那么加上durable=True
channel.basic_publish(exchange='',
routing_key='hello',
body='Hello World!',
properties=pika.BasicProperties(
delivery_mode=2,
# 标记我们的消息为持久化的 - 通过设置 delivery_mode 属性为 2
# 这样必须设置,让消息实现持久化
))
# 这个exchange参数就是这个exchange的名字. 空字符串标识默认的或者匿名的exchange:如果存在routing_key, 消息路由到routing_key指定的队列中。
print(" [x] 开始队列'")
connection.close()

消费者:

import pika
connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
# 创建频道
channel = connection.channel()
# 创建队列,使用durable方法
channel.queue_declare(queue='hello', durable=True) def callback(ch, method, properties, body):
print(" [x] Received %r" % body)
import time
time.sleep(10)
print 'ok'
ch.basic_ack(delivery_tag = method.delivery_tag) channel.basic_consume(callback,
queue='hello',
no_ack=False) print(' [*] 等待队列. To exit press CTRL+C')
channel.start_consuming()

消息获取顺序

默认消息队列里的数据是按照顺序被消费者拿走,例如:消费者1 去队列中获取 奇数 序列的任务,消费者2去队列中获取 偶数 序列的任务。

channel.basic_qos(prefetch_count=1) 表示谁来谁取,不再按照奇偶数排列。

import pika
connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()
channel.queue_declare(queue='hello'durable=True) # 设置队列持久化 def callback(ch, method, properties, body):
print(" [x] Received %r" % body)
import time
time.sleep(10)
print 'ok'
# 消息未处理完前不要发送信息的消息
ch.basic_ack(delivery_tag = method.delivery_tag)
# 表示谁来谁取,不再按照奇偶数排列
channel.basic_qos(prefetch_count=1) channel.basic_consume(callback,
queue='hello',
no_ack=False) print(' [*] Waiting for messages. To exit press CTRL+C')
channel.start_consuming()

发布订阅

Python之路第十二天,高级(4)-Python操作rabbitMQ

发布订阅和简单的消息队列区别在于,发布订阅会将消息发送给所有的订阅者,而消息队列中的数据被消费一次便消失。所以,RabbitMQ实现发布和订阅时,会为每一个订阅者创建一个队列,而发布者发布消息时,会将消息放置在所有相关队列中。

exchange type = fanout

发布者:

import pika
import sys connection = pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel() channel.exchange_declare(exchange='logs',
type='fanout') message = ' '.join(sys.argv[1:]) or "info: Hello World!"
channel.basic_publish(exchange='logs',
routing_key='',
body=message)
print(" [x] Sent %r" % message)
connection.close()

订阅者:

import pika

connection = pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel() channel.exchange_declare(exchange='logs',
type='fanout') result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue channel.queue_bind(exchange='logs',
queue=queue_name) print(' [*] Waiting for logs. To exit press CTRL+C') def callback(ch, method, properties, body):
print(" [x] %r" % body) channel.basic_consume(callback,
queue=queue_name,
no_ack=True) channel.start_consuming()

关键字发送

exchange type = direct

之前事例,发送消息时明确指定某个队列并向其中发送消息,RabbitMQ还支持根据关键字发送,即:队列绑定关键字,发送者将数据根据关键字发送到消息exchange,exchange根据 关键字 判定应该将数据发送至指定队列。

Python之路第十二天,高级(4)-Python操作rabbitMQ

发送者:

import pika
import sys connection = pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel() channel.exchange_declare(exchange='direct_logs',
type='direct') severity = sys.argv[1] if len(sys.argv) > 1 else 'info'
message = ' '.join(sys.argv[2:]) or 'Hello World!'
channel.basic_publish(exchange='direct_logs',
routing_key=severity,
body=message)
print(" [x] Sent %r:%r" % (severity, message))
connection.close()

订阅者:

import pika
import sys connection = pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel() channel.exchange_declare(exchange='direct_logs',
type='direct') result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue severities = sys.argv[1:]
if not severities:
sys.stderr.write("Usage: %s [info] [warning] [error]\n" % sys.argv[0])
sys.exit(1) for severity in severities:
channel.queue_bind(exchange='direct_logs',
queue=queue_name,
routing_key=severity) print(' [*] Waiting for logs. To exit press CTRL+C') def callback(ch, method, properties, body):
print(" [x] %r:%r" % (method.routing_key, body)) channel.basic_consume(callback,
queue=queue_name,
no_ack=True) channel.start_consuming()

模糊匹配

Python之路第十二天,高级(4)-Python操作rabbitMQ

exchange type = topic

在topic类型下,可以让队列绑定几个模糊的关键字,之后发送者将数据发送到exchange,exchange将传入”路由值“和 ”关键字“进行匹配,匹配成功,则将数据发送到指定队列。

  • # 表示可以匹配0个或多个单词
  • * 表示只能匹配一个单词

发送者路由值 队列中

old.boy.python          old.*  -- 不匹配
old.boy.python old.# -- 匹配

发送者:

import pika
import sys connection = pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel() channel.exchange_declare(exchange='topic_logs',
type='topic') routing_key = sys.argv[1] if len(sys.argv) > 1 else 'anonymous.info'
message = ' '.join(sys.argv[2:]) or 'Hello World!'
channel.basic_publish(exchange='topic_logs',
routing_key=routing_key,
body=message)
print(" [x] Sent %r:%r" % (routing_key, message))
connection.close()

订阅者:

import pika
import sys connection = pika.BlockingConnection(pika.ConnectionParameters(
host='localhost'))
channel = connection.channel() channel.exchange_declare(exchange='topic_logs',
type='topic') result = channel.queue_declare(exclusive=True)
queue_name = result.method.queue binding_keys = sys.argv[1:]
if not binding_keys:
sys.stderr.write("Usage: %s [binding_key]...\n" % sys.argv[0])
sys.exit(1) for binding_key in binding_keys:
channel.queue_bind(exchange='topic_logs',
queue=queue_name,
routing_key=binding_key) print(' [*] Waiting for logs. To exit press CTRL+C') def callback(ch, method, properties, body):
print(" [x] %r:%r" % (method.routing_key, body)) channel.basic_consume(callback,
queue=queue_name,
no_ack=True) channel.start_consuming()
上一篇:R12: Improving Performance of General Ledger and Journal Import (Doc ID 858725.1 )


下一篇:文成小盆友python-num12 Redis发布与订阅补充,python操作rabbitMQ