AI - TensorFlow - Classification(分类)与Regression (回归)

分类与回归

分类(Classification)与回归(Regression)的区别在于输出变量的类型
通俗理解,定量输出称为回归,或者说是连续变量预测;定性输出称为分类,或者说是离散变量预测。

回归问题的预测结果是连续的,通常是用来预测一个值,如预测房价、未来的天气情况等等。
一个比较常见的回归算法是线性回归算法(LR,Linear Regression)。
回归分析用在神经网络上,其最上层不需要加上softmax函数,而是直接对前一层累加即可。
回归是对真实值的一种逼近预测。

分类问题的预测结果是离散的,是用于将事物打上一个标签,通常结果为离散值。
分类通常是建立在回归之上,分类的最后一层通常要使用softmax函数进行判断其所属类别。
分类并没有逼近的概念,最终正确结果只有一个,错误的就是错误的,不会有相近的概念。
最常见的分类方法是逻辑回归(Logistic Regression),或者叫逻辑分类。

 

MNIST数据集

MNIST(Mixed National Institute of Standards and Technology database)是一个计算机视觉数据集;

  • 官方下载地址:http://yann.lecun.com/exdb/mnist/
  • 包含70000张手写数字的灰度图片,其中60000张为训练图像和10000张为测试图像;
  • 每一张图片都是28*28个像素点大小的灰度图像;

如果无法从网络下载MNIST数据集,可从官方下载,然后存放在当前脚本目录下的新建MNIST_data目录即可;

  •  MNIST_data\train-images-idx3-ubyte.gz
  • MNIST_data\train-labels-idx1-ubyte.gz
  • MNIST_data\t10k-images-idx3-ubyte.gz
  • MNIST_data\t10k-labels-idx1-ubyte.gz

 

示例程序

 1 # coding=utf-8
 2 from __future__ import print_function
 3 import tensorflow as tf
 4 from tensorflow.examples.tutorials.mnist import input_data  # MNIST数据集
 5 import os
 6 
 7 os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
 8 
 9 old_v = tf.logging.get_verbosity()
10 tf.logging.set_verbosity(tf.logging.ERROR)
11 
12 mnist = input_data.read_data_sets('MNIST_data', one_hot=True)  # 准备数据(如果本地没有数据,将从网络下载)
13 
14 
15 def add_layer(inputs, in_size, out_size, activation_function=None, ):
16     Weights = tf.Variable(tf.random_normal([in_size, out_size]))
17     biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, )
18     Wx_plus_b = tf.matmul(inputs, Weights) + biases
19     if activation_function is None:
20         outputs = Wx_plus_b
21     else:
22         outputs = activation_function(Wx_plus_b, )
23     return outputs
24 
25 
26 def compute_accuracy(v_xs, v_ys):
27     global prediction
28     y_pre = sess.run(prediction, feed_dict={xs: v_xs})
29     correct_prediction = tf.equal(tf.argmax(y_pre, 1), tf.argmax(v_ys, 1))
30     accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
31     result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys})
32     return result
33 
34 
35 xs = tf.placeholder(tf.float32, [None, 784])  # 输入数据是784(28*28)个特征
36 ys = tf.placeholder(tf.float32, [None, 10])  # 输出数据是10个特征
37 
38 prediction = add_layer(xs, 784, 10, activation_function=tf.nn.softmax)  # 激励函数为softmax
39 
40 cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),
41                                               reduction_indices=[1]))  # loss函数(最优化目标函数)选用交叉熵函数
42 
43 train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)  # train方法(最优化算法)采用梯度下降法
44 
45 sess = tf.Session()
46 init = tf.global_variables_initializer()
47 sess.run(init)
48 
49 for i in range(1000):
50     batch_xs, batch_ys = mnist.train.next_batch(100)  # 每次只取100张图片,免得数据太多训练太慢
51     sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys})
52     if i % 50 == 0:  # 每训练50次输出预测精度
53         print(compute_accuracy(
54             mnist.test.images, mnist.test.labels))

 

程序运行结果:

Extracting MNIST_data\train-images-idx3-ubyte.gz
Extracting MNIST_data\train-labels-idx1-ubyte.gz
Extracting MNIST_data\t10k-images-idx3-ubyte.gz
Extracting MNIST_data\t10k-labels-idx1-ubyte.gz
0.146
0.6316
0.7347
0.7815
0.8095
0.8198
0.8306
0.837
0.8444
0.8547
0.8544
0.8578
0.8651
0.8649
0.8705
0.8704
0.8741
0.8719
0.8753
0.8756

 

上一篇:BigDecimal判断两值是否相等(转载)


下一篇:JavaWeb同步学习笔记之三十八、JavaWeb_MVC案例之通过配置切换底层存储源