【线性回归】读取txt

txt中部分数据如下:

1.000000    0.067732    3.176513
1.000000    0.427810    3.816464
1.000000    0.995731    4.550095
1.000000    0.738336    4.256571
1.000000    0.981083    4.560815
1.000000    0.526171    3.929515
1.000000    0.378887    3.526170
1.000000    0.033859    3.156393
1.000000    0.132791    3.110301
1.000000    0.138306    3.149813

读取数据:

from numpy import *
import numpy as np

def loadDataSet(fileName):      #general function to parse tab -delimited floats
    numFeat = len(open(fileName).readline().split('\t')) - 1 #get number of fields 
    dataMat = []
    labelMat = []
    fr = open(fileName)
    for line in fr.readlines():
        lineArr =[]
        curLine = line.strip().split('\t')
        for i in range(numFeat):
            lineArr.append(float(curLine[i]))
        dataMat.append(lineArr)
        labelMat.append(float(curLine[-1]))
    return dataMat,labelMat
xArr,yArr=loadDataSet("ex0.txt")
print(xArr[:10])
print(yArr[:10])

结果:

【线性回归】读取txt

上一篇:20 机器学习 - Lineage逻辑回归算法分类案例


下一篇:机器学习之SVM支持向量机笔记