Pytorch基础的基本概念

1.什么是Pytorch,为什么选择Pytroch?
2.Pytroch的安装
3.配置Python环境
4.准备Python管理器
5.通过命令行安装PyTorch
6.PyTorch基础概念

GPU云服务器默认提供了pytorch的环境,

7.通用代码实现流程(实现一个深度学习的代码流程)

import torch
import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):

def __init__(self):
    super(Net, self).__init__()
    # 1 input image channel, 6 output channels, 5x5 square convolution
    # kernel
    self.conv1 = nn.Conv2d(1, 6, 5)
    self.conv2 = nn.Conv2d(6, 16, 5)
    # an affine operation: y = Wx + b
    self.fc1 = nn.Linear(16 * 5 * 5, 120)
    self.fc2 = nn.Linear(120, 84)
    self.fc3 = nn.Linear(84, 10)

def forward(self, x):
    # Max pooling over a (2, 2) window
    x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
    # If the size is a square you can only specify a single number
    x = F.max_pool2d(F.relu(self.conv2(x)), 2)
    x = x.view(-1, self.num_flat_features(x))
    x = F.relu(self.fc1(x))
    x = F.relu(self.fc2(x))
    x = self.fc3(x)
    return x

def num_flat_features(self, x):
    size = x.size()[1:]  # all dimensions except the batch dimension
    num_features = 1
    for s in size:
        num_features *= s
    return num_features
上一篇:几种常见的激活函数


下一篇:几种常见的激活函数