OpenCV+Python实现图像运动模糊和高斯模糊!它是编程界的PS!

运动模糊: 由于相机和物体之间的相对运动造成的模糊,又称为动态模糊

OpenCV+Python实现运动模糊,主要用到的函数是cv2.filter2D():

# coding: utf-8
import numpy as np
import cv2
def motion_blur(image, degree=12, angle=45):
    image = np.array(image)
    # 这里生成任意角度的运动模糊kernel的矩阵, degree越大,模糊程度越高
    M = cv2.getRotationMatrix2D((degree / 2, degree / 2), angle, 1)
    motion_blur_kernel = np.diag(np.ones(degree))
    motion_blur_kernel = cv2.warpAffine(motion_blur_kernel, M, (degree, degree))
    motion_blur_kernel = motion_blur_kernel / degree
    blurred = cv2.filter2D(image, -1, motion_blur_kernel)
    # convert to uint8
    cv2.normalize(blurred, blurred, 0, 255, cv2.NORM_MINMAX)
    blurred = np.array(blurred, dtype=np.uint8)
    return blurred
img = cv2.imread('linuxidc.com.jpg')
img_ = motion_blur(img)
cv2.imshow('Source image',img)
cv2.imshow('blur image',img_)
cv2.waitKey()

原图与运动模糊效果如下:

OpenCV+Python实现图像运动模糊和高斯模糊!它是编程界的PS!

 

 

 

Python学习交流群:1004391443,这里有资源共享,技术解答,还有小编从最基础的Python资料到项目实战的学习资料都有整理,希望能帮助你更了解python,学习python。

高斯模糊:图像与二维高斯分布的概率密度函数做卷积,模糊图像细节

OpenCV+Python实现高斯模糊,主要用到的函数是cv2.GaussianBlur():

# coding: utf-8
import numpy as np
import cv2
img = cv2.imread('linuxidc.com.jpg')
img_ = cv2.GaussianBlur(img, ksize=(9, 9), sigmaX=0, sigmaY=0)
cv2.imshow('Source image',img)
cv2.imshow('blur image',img_)
cv2.waitKey()

高斯模糊效果如下:

OpenCV+Python实现图像运动模糊和高斯模糊!它是编程界的PS!

 

 

 

上一篇:IOS 特定于设备的开发:Core Motion基础


下一篇:leaflet动态路径