题目链接:
https://nanti.jisuanke.com/t/17115
题意:
询问硬币K次,正面朝上次数为偶数。
思路:
dp[i][0] = 下* dp[i-1][0] + 上*dp[i-1][1] (满足条件的)
dp[i][1]= 上*dp[i-1][0] + 下*dp[i-1][1] (不满足条件的)
矩阵优化这个DP
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL mod = 1e9+7;
struct Matrix{
LL a[2][2];
void set1(){
memset(a, 0, sizeof(a));
}
void set2(){
set1();
for(int i=0; i<2; i++) a[i][i]=1;
}
};
Matrix operator*(const Matrix &a, const Matrix &b){
Matrix res;
res.set1();
for(int i=0; i<2; i++){
for(int j=0; j<2; j++){
for(int k=0; k<2; k++){
res.a[i][j] = (res.a[i][j] + a.a[i][k]*b.a[k][j]%mod)%mod;
}
}
}
return res;
}
Matrix qsm(Matrix a, LL n){
Matrix res;
res.set2();
while(n){
if(n&1) res = res*a;
a = a*a;
n /= 2;
}
return res;
}
LL qsmrev(LL a, LL n){
LL ret = 1;
while(n){
if(n&1) ret=ret*a%mod;
a=a*a%mod;
n/=2;
}
return ret;
} int main()
{
int T;
scanf("%d", &T);
while(T--){
LL p, q, k;
scanf("%lld %lld %lld", &p,&q,&k);
LL up = q*qsmrev(p, mod-2)%mod;
LL down = (p-q)*qsmrev(p, mod-2)%mod;
Matrix a, b;
a.set1();
a.a[0][0]=down;
a.a[1][0]=up;
if(k==1){
printf("%lld\n", a.a[0][0]);
}
else{
b.a[0][0]=down, b.a[0][1]=up;
b.a[1][0]=up, b.a[1][1]=down;
a = qsm(b, k-1)*a;
printf("%lld\n", a.a[0][0]%mod);
}
}
return 0;
}