我们设最后答案为 x , 我们我们就能用x表示出所有节点下面的苹果个数, 然后用叶子节点求lcm, 取最大的可行解。
#include<bits/stdc++.h> #define LL long long #define fi first #define se second #define mk make_pair #define PLL pair<LL, LL> #define PLI pair<LL, int> #define PII pair<int, int> #define SZ(x) ((int)x.size()) #define ull unsigned long long using namespace std; const int N = 1e5 + 7; const int inf = 0x3f3f3f3f; const LL INF = 0x3f3f3f3f3f3f3f3f; const int mod = 1e9 + 7; const double eps = 1e-8; int n, a[N]; LL dv[N], sum[N], all; vector<int> leaf; vector<int> G[N]; void solve(int u, int fa) { if(u != 1 && SZ(G[u]) == 1) leaf.push_back(u); sum[u] = a[u]; for(int v : G[u]) { if(v == fa) continue; solve(v, u); sum[u] += sum[v]; } } void dfs(int u, int fa) { if(dv[u] > all) { printf("%lld\n", all); exit(0); } for(int v : G[u]) { if(v == fa) continue; if(u == 1) dv[v] = dv[u] * SZ(G[u]); else dv[v] = dv[u] * (SZ(G[u]) - 1); dfs(v, u); } } bool check(LL x) { for(auto& id : leaf) { if(x / dv[id] > a[id]) return false; } return true; } int main() { scanf("%d", &n); for(int i = 1; i <= n; i++) scanf("%d", &a[i]), all += a[i]; for(int i = 1; i < n; i++) { int u, v; scanf("%d%d", &u, &v); G[u].push_back(v); G[v].push_back(u); } dv[1] = 1; solve(1, 0); dfs(1, 0); LL lcm = 1; for(auto& id : leaf) { LL gcd = __gcd(lcm, dv[id]); if(1.0 * lcm / gcd * dv[id] > all) { printf("%lld\n", all); return 0; } lcm = lcm / gcd * dv[id]; } LL low = 1, high = all / lcm, ans = 0; while(low <= high) { LL mid = low + high >> 1; if(check(mid * lcm)) ans = mid, low = mid + 1; else high = mid - 1; } printf("%lld\n", all - ans * lcm); return 0; } /* */