BP神经网络在python下的自主搭建梳理

本实验使用mnist数据集完成手写数字识别的测试。识别正确率认为是95%

完整代码如下:

BP神经网络在python下的自主搭建梳理
  1 #!/usr/bin/env python
  2 # coding: utf-8
  3 
  4 # In[1]:
  5 
  6 
  7 import numpy
  8 import scipy.special
  9 import matplotlib.pyplot
 10 
 11 
 12 # In[2]:
 13 
 14 
 15 class neuralNetwork:
 16     def __init__(self, inputNodes, hiddenNodes, outputNodes,learningRate):
 17         self.iNodes = inputNodes
 18         self.oNodes = outputNodes
 19         self.hNodes = hiddenNodes
 20         self.lr = learningRate
 21         self.wih = numpy.random.normal (0.0, pow(self.hNodes,-0.5), (self.hNodes, self.iNodes))
 22         self.who = numpy.random.normal (0.0, pow(self.oNodes,-0.5), (self.oNodes, self.hNodes))
 23         
 24         self.activation_function = lambda x: scipy.special.expit(x)
 25         #print(self.wih)
 26         pass
 27     
 28     def train(self,inputs_list, target_list):
 29         inputs = numpy.array(inputs_list, ndmin=2).T
 30         targets = numpy.array(target_list, ndmin=2).T
 31         #print(inputs)
 32         #print(targets)
 33         hidden_inputs = numpy.dot(self.wih,inputs)
 34         #print(self.wih.shape)
 35         #print(inputs.shape)
 36         hidden_outputs = self.activation_function(hidden_inputs)
 37         #print(hidden_inputs)
 38         final_inputs = numpy.dot(self.who,hidden_outputs)
 39         #print(hidden_outputs)
 40         final_outputs = self.activation_function(final_inputs)
 41         
 42         output_errors = targets - final_outputs
 43         hidden_errors = numpy.dot(self.who.T,output_errors)
 44         self.who += self.lr * numpy.dot((output_errors * final_outputs * (1.0 - final_outputs)),numpy.transpose(hidden_outputs))
 45         self.wih += self.lr * numpy.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)),numpy.transpose(inputs))
 46         pass
 47     
 48     def query(self, inputs_list):
 49         inputs = numpy.array(inputs_list, ndmin=2).T
 50         hidden_inputs = numpy.dot(self.wih,inputs)
 51         hidden_outputs = self.activation_function(hidden_inputs)
 52         final_inputs = numpy.dot(self.who,hidden_outputs)
 53         final_outpus = self.activation_function(final_inputs)
 54         return final_outpus
 55         pass
 56     
 57 
 58 
 59 # In[3]:
 60 
 61 
 62 inputNodes = 784
 63 outputNodes = 10
 64 hiddenNodes = 100
 65 learningRate = 0.1
 66 nN = neuralNetwork(inputNodes, hiddenNodes, outputNodes, learningRate)
 67 
 68 
 69 # In[4]:
 70 
 71 
 72 data_file = open("mnist_train.csv",'r')
 73 data_list = data_file.readlines()
 74 data_file.close()
 75 
 76 
 77 # In[5]:
 78 
 79 
 80 epochs = 1
 81 for e in range(epochs) :
 82     for record in data_list:
 83         all_values = record.split(',')
 84         inputs = numpy.asfarray( all_values [1:])/255.0*0.99+0.01
 85         targets = numpy.zeros(outputNodes) + 0.01
 86         targets[int (all_values[0])] = 0.99
 87         nN.train(inputs,targets)
 88         pass
 89     pass
 90 
 91 
 92 # In[6]:
 93 
 94 
 95 test_data_file = open("mnist_test.csv",'r')
 96 test_data_list = test_data_file.readlines()
 97 test_data_file.close()
 98 
 99 
100 # In[7]:
101 
102 
103 scorecard = []
104 for record in test_data_list:
105     all_values = record.split(',')
106     correct_label = int(all_values[0])
107     inputs = numpy.asfarray( all_values [1:])/255.0*0.99+0.01
108     outputs = nN.query(inputs)
109     label = numpy.argmax(outputs)
110     if(label == correct_label):
111         scorecard.append(1)
112     else:
113         scorecard.append(0)
114         pass
115     pass
116 
117 
118 # In[8]:
119 
120 
121 scorecard_array = numpy.asarray(scorecard)
122 print ("performance = " ,scorecard_array.sum()/scorecard_array.size)
123 
124 
125 # In[9]:
126 
127 
128 import scipy.misc
129 img_array = scipy.misc.imread('test.png',flatten="True")
130 img_data = 255.0 - img_array . reshape(784)
131 img_data = (img_data /255.0 * 0.99 ) + 0.01
132 op=nN.query(img_data)
133 print(op)
134 print(numpy.argmax(op))
135 
136 
137 # In[10]:
138 
139 
140 all_values = data_list[1].split(',')
141 image_array = numpy.asfarray( all_values [1:]).reshape((28,28))
142 matplotlib.pyplot.imshow(image_array, cmap = 'Greys',interpolation='None')
View Code

 

IN[9]到IN[10]的代码分别用于测试自己制作的数字识别效果和显示图像。

代码运行过程需要mnist数据集,链接:https://pan.baidu.com/s/120GTdZ8Tivkp1KD9VQ_XeQ

 

上一篇:MobileNetV2


下一篇:鼠标焦点在input的某个位置上,点击一个button 在input光标处的增加文字