最短路算法 (bellman-Ford算法)

贝尔曼-福特算法迪科斯彻算法类似,都以松弛操作为基础,即估计的最短路径值渐渐地被更加准确的值替代,直至得到最优解。在两个算法中,计算时每个边之间的估计距离值都比真实值大,并且被新找到路径的最小长度替代。 然而,迪科斯彻算法以贪心法选取未被处理的具有最小权值的节点,然后对其的出边进行松弛操作;而贝尔曼-福特算法简单地对所有边进行松弛操作,共|V | − 1次,其中 |V |是图的点的数量。在重复地计算中,已计算得到正确的距离的边的数量不断增加,直到所有边都计算得到了正确的路径。这样的策略使得贝尔曼-福特算法比迪科斯彻算法适用于更多种类的输入。

贝尔曼-福特算法的最多运行O(|V|·|E|)次,|V|和|E|分别是节点和边的数量)。

贝尔曼-福特算法迪科斯彻算法最大的不同:bellman-Ford算法可以存在负权边,而dijkstra算法不允许出现负权边;

bellman-Ford算法的步骤:

    步骤1:初始化图

    步骤2 :对每一条边进行松弛操作

    步骤3:检查负权环

procedure BellmanFord(list vertices, list edges, vertex source)
// 该实现读入边和节点的列表,并向两个数组(distance和predecessor)中写入最短路径信息 // 步骤1:初始化图
for each vertex v in vertices:
if v is source then distance[v] :=
else distance[v] := infinity
predecessor[v] := null // 步骤2:重复对每一条边进行松弛操作
for i from to size(vertices)-:
for each edge (u, v) with weight w in edges:
if distance[u] + w < distance[v]:
distance[v] := distance[u] + w
predecessor[v] := u // 步骤3:检查负权环
for each edge (u, v) with weight w in edges:
if distance[u] + w < distance[v]:
error "图包含了负权环"

POJ 3259

题意:John在N个农场之间有path与wormhole ,path+时间,wormhole-时间;求是否存在某点满足,John 旅行一些 paths和wormholes,回到原点时间为负。

思路:标准bellman-Ford算法;(检查负权环)

#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <ctime>
#include <cmath>
#include <cstdio>
#include <string>
#include <cstring>
#include <vector>
#include <queue>
#include <stack>
#include <set> #define c_false ios_base::sync_with_stdio(false); cin.tie(0)
#define INF 0x3f3f3f3f
#define INFL 0x3f3f3f3f3f3f3f3f
#define zero_(x,y) memset(x , y , sizeof(x))
#define zero(x) memset(x , 0 , sizeof(x))
#define MAX(x) memset(x , 0x3f ,sizeof(x))
#define swa(x,y) {LL s;s=x;x=y;y=s;}
using namespace std ;
#define N 505
#define lowbit(k) k&(-k)
const double PI = acos(-1.0);
const int M = 1e5+;
typedef long long LL ;
int farm, field, path, wormhole, sum;
int dis[N];
struct way{
int Begin, End, Time;
}a[N*N];
bool BellmanFord(){
for(int i = ; i <= field; i++) dis[i] = M; ///初始化操作;
for(int i = ; i < field; i++){ ///松弛操作;
for(int j = ; j <= sum; j++){
if(dis[a[j].End] > dis[a[j].Begin] + a[j].Time)
dis[a[j].End] = dis[a[j].Begin] + a[j].Time;
}
}
for(int i = ; i <= sum; i++) ///检查负权环;
if(dis[a[i].End] >dis[a[i].Begin] +a[i].Time)
return false;
return true;
} int main(){
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
//ios_base::sync_with_stdio(false); cin.tie(0);
scanf("%d", &farm);
while(farm--){
int s, e, t, k = ;
scanf("%d%d%d", &field, &path, &wormhole);
for(int i = ; i < path; i++){
scanf("%d%d%d", &s, &e, &t);
k++;
a[k].Begin = s;
a[k].End = e;
a[k].Time = t;
k++;
a[k].Begin = e;
a[k].End = s;
a[k].Time = t;
}
for(int i = ; i < wormhole; i++){
scanf("%d%d%d", &s, &e, &t);
k++;
a[k].Begin = s;
a[k].End = e;
a[k].Time = -t;
}
sum = k;
if(!BellmanFord()) printf("YES\n");
else printf("NO\n");
}
return ;
}

POj 1860

题意:N种货币,M个交易点,每次交易要收佣金,求是否存在增值的方法。

思路:刚好与Bellman-Ford算法相反,检查正权环;

A到B的边权为:B = (A - Cab)*Rab;

discuss里有人讨论环是否包含了S点,其实环没必要包含S点,

因为只要找到了一个可以无限增加财富的环,增加财富后再回到S点就可以了。

所以环是没必要包含S点的。

#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <ctime>
#include <cmath>
#include <cstdio>
#include <string>
#include <cstring>
#include <vector>
#include <queue>
#include <stack>
#include <set> #define c_false ios_base::sync_with_stdio(false); cin.tie(0)
#define INF 0x3f3f3f3f
#define INFL 0x3f3f3f3f3f3f3f3f
#define zero_(x,y) memset(x , y , sizeof(x))
#define zero(x) memset(x , 0 , sizeof(x))
#define MAX(x) memset(x , 0x3f ,sizeof(x))
#define swa(x,y) {LL s;s=x;x=y;y=s;}
using namespace std ;
#define N 505
#define lowbit(k) k&(-k)
const double PI = acos(-1.0);
const int M = 1e5+;
typedef long long LL; int n, m, S, sum;
double Rab, Cab, Rba, Cba, V;
double dis[N];
struct way{
int Begin, End;
double Change, Rate;
}a[N*N]; bool BellmanFord(){
zero(dis);
dis[S] = V;
int sign;
for(int i = ; i <= n; i++){
sign = ;
for(int j = ; j <= sum; j++){
if(dis[a[j].End] < (dis[a[j].Begin] - a[j].Change)*a[j].Rate)
dis[a[j].End] = (dis[a[j].Begin] - a[j].Change)*a[j].Rate;
sign = ;
}
if(!sign)
break;
}
for(int j = ; j <= sum; j++){
if(dis[a[j].End] < (dis[a[j].Begin] - a[j].Change)*a[j].Rate)
return true;
}
return false;
} int main(){
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
//ios_base::sync_with_stdio(false); cin.tie(0);
while(~scanf("%d%d%d%lf", &n, &m, &S, &V)){
int x, y, k = ;
for(int i = ; i < m; i++){
scanf("%d%d%lf%lf%lf%lf", &x, &y, &Rab, &Cab,&Rba,&Cba);
++k;
a[k].Begin = x;
a[k].End = y;
a[k].Change= Cab;
a[k].Rate = Rab;
++k;
a[k].Begin = y;
a[k].End = x;
a[k].Change= Cba;
a[k].Rate = Rba;
}
sum = k;
if(BellmanFord()) printf("YES\n");
else printf("NO\n");
}
return ;
}

POJ 1062

题意:酋长卖女儿,N个物品,阶级差判断是否连通,金币看作边权。求最小价格。(存在自己到自己的边)

设:dis[i] 为购买i物品需要的最小价格;pre[i] 为阶级;

初始化:dis[i] = prise;  else INF;

边权:(A->B) B = A + dis[a[i].money];

关键在于阶级的判断:要保证以a[1]为终点的路径中满足阶级差不大于m;

          开始以为边的两点都只要满足[pre[1] - m, pre[1] +m]就可以了;

          但是如果边的两点的差值就直接大于m呢?(有人提出了越等级的要求!)

          这时候就要满足全部[pre[1]-m,a[1]],[pre[1]-m+1, pre[1]+1]………[pre[1], pre[1] +m];

          对于每个物品先标记再求;取其最小值即可;

#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <ctime>
#include <cmath>
#include <cstdio>
#include <string>
#include <cstring>
#include <vector>
#include <queue>
#include <stack>
#include <set> #define c_false ios_base::sync_with_stdio(false); cin.tie(0)
#define INF 0x3f3f3f3f
#define INFL 0x3f3f3f3f3f3f3f3f
#define zero_(x,y) memset(x , y , sizeof(x))
#define zero(x) memset(x , 0 , sizeof(x))
#define MAX(x) memset(x , 0x3f ,sizeof(x))
#define swa(x,y) {LL s;s=x;x=y;y=s;}
using namespace std ;
#define N 505
#define lowbit(k) k&(-k)
const double PI = acos(-1.0);
const int M = 1e5+;
typedef long long LL; int n, m, S, sum, P, L, X;
int dis[N],pre[N];
bool could[N];
struct way{
int Begin, End, Money;
}a[N*N]; void BellmanFord(){
for(int i = ; i <= n; i++)
if(dis[i] == ) dis[i] = M;
for(int i = ; i <= n; i++){
for(int j = ; j <= sum; j++){
if(could[a[j].End] && could[a[j].Begin])
if(dis[a[j].End] > dis[a[j].Begin] + a[j].Money)
dis[a[j].End] = dis[a[j].Begin] + a[j].Money;
}
}
} int main(){
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
//ios_base::sync_with_stdio(false); cin.tie(0);
while(~scanf("%d%d", &m, &n)){
zero(dis);zero(pre);
int x, y, k = ;
for(int i = ; i <= n; i++){
scanf("%d%d%d", &P, &L, &X);
dis[i] = P;
pre[i] = L;
for(int j = ; j <= X; j++){
scanf("%d%d", &x, &y);
++k;
a[k].Begin = x;
a[k].End = i;
a[k].Money = y;
}
}
sum = k;
int MIN = M;
for(int i = ; i <= m; i++){
zero(could);
for(int j = ; j <= n; j++){
if(pre[] - (m-i) <= pre[j] && pre[] + i >= pre[j]){
could[j] = true;
//cout<<pre[j]<<" "<<j<<endl;
}
}
BellmanFord();
if(dis[] < MIN) MIN = dis[];
//cout<<dis[1]<<endl;
}
printf("%d\n", MIN);
}
return ;
}
上一篇:Oceanus的实时流式计算实践与优化


下一篇:NOIp2016 游记