第 14 节  DataStream之sink(java)

上篇:第 13 节 DataStream之partition(java)


1、Sink部分详解

DataStream API之Data Sink

  1. writeAsText():将元素以字符串形式逐行写入,这些字符串通过调用每个元素的toString()方法来获取
  2. print() / printToErr():打印每个元素的toString()方法的值到标准输出或者标准错误输出流中
  3. 自定义输出addSink【kafka、redis】

2、内置Connectors

  1. Apache Kafka (source/sink)
  2. Apache Cassandra (sink)
  3. Elasticsearch (sink)
  4. Hadoop FileSystem (sink)
  5. RabbitMQ (source/sink)
  6. Apache ActiveMQ (source/sink)
  7. Redis (sink)

3、Sink 容错性保证

Sink 语义保证 备注
hdfs exactly once
elasticsearch at least once
kafka produce at least once/exactly once Kafka 0.9 and 0.10提供at least onceKafka 0.11提供exactly once
redis at least once

4、实际操作

(1)先启动redis服务:

[root@flink102 module]# service redisd start

Starting Redis server...
1769:C 08 Mar 15:31:56.554 # oO0OoO0OoO0Oo Redis is starting oO0OoO0OoO0Oo
1769:C 08 Mar 15:31:56.554 # Redis version=4.0.6, bits=64, commit=00000000, modified=0, pid=1769, just started
1769:C 08 Mar 15:31:56.554 # Configuration loaded

(2)启动客服端服务

[root@flink102 src]# redis-cli
127.0.0.1:6379> 
//查看当前库的数据
127.0.0.1:6379> keys *
(empty list or set)
127.0.0.1:6379> 

(3)pom文件需要引入的依赖:

  <!-- https://mvnrepository.com/artifact/org.apache.bahir/flink-connector-redis -->
        <dependency>
            <groupId>org.apache.bahir</groupId>
            <artifactId>flink-connector-redis_2.11</artifactId>
            <version>1.0</version>
        </dependency>

pom文件的完整依赖

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>org.example.flink01</groupId>
    <artifactId>flink01</artifactId>
    <version>1.0-SNAPSHOT</version>
    <dependencies>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>1.6.1</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java_2.11</artifactId>
            <version>1.6.1</version>
           <!-- //   <scope>provided</scope>-->
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients_2.11</artifactId>
            <version>1.6.1</version>
        </dependency>

        <!-- https://mvnrepository.com/artifact/org.apache.bahir/flink-connector-redis -->
        <dependency>
            <groupId>org.apache.bahir</groupId>
            <artifactId>flink-connector-redis_2.11</artifactId>
            <version>1.0</version>
        </dependency>


        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-scala_2.11</artifactId>
            <version>1.6.1</version>
        </dependency>

    </dependencies>

    <build>
        <plugins>
            <!-- 编译插件 -->
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>3.6.0</version>
                <configuration>
                    <source>1.8</source>
                    <target>1.8</target>
                    <encoding>UTF-8</encoding>
                </configuration>
            </plugin>
            <!-- scala编译插件 -->
            <plugin>
                <groupId>net.alchim31.maven</groupId>
                <artifactId>scala-maven-plugin</artifactId>
                <version>3.1.6</version>
                <configuration>
                    <scalaCompatVersion>2.11</scalaCompatVersion>
                    <scalaVersion>2.11.12</scalaVersion>
                    <encoding>UTF-8</encoding>
                </configuration>
                <executions>
                    <execution>
                        <id>compile-scala</id>
                        <phase>compile</phase>
                        <goals>
                            <goal>add-source</goal>
                            <goal>compile</goal>
                        </goals>
                    </execution>
                    <execution>
                        <id>test-compile-scala</id>
                        <phase>test-compile</phase>
                        <goals>
                            <goal>add-source</goal>
                            <goal>testCompile</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
            <!-- 打jar包插件(会包含所有依赖) -->
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-assembly-plugin</artifactId>
                <version>2.6</version>
                <configuration>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependencies</descriptorRef>
                    </descriptorRefs>
                    <archive>
                        <manifest>
                            <!-- 可以设置jar包的入口类(可选) -->
                            <mainClass>xuwei.streaming.SocketWindowWordCountJava</mainClass>
                        </manifest>
                    </archive>
                </configuration>
                <executions>
                    <execution>
                        <id>make-assembly</id>
                        <phase>package</phase>
                        <goals>
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>
</project>

(4)具体代码实现:

package xuwei.sink;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.functions.RuntimeContext;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;
import org.apache.flink.streaming.connectors.redis.RedisSink;
import org.apache.flink.streaming.connectors.redis.common.config.FlinkJedisClusterConfig;
import org.apache.flink.streaming.connectors.redis.common.config.FlinkJedisPoolConfig;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisCommandDescription;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisMapper;

/**
 * 接收socket数据,把数据保存到redis中
 *
 * List
 *
 * lpush list_key value
 */
public class StreamingDemoToRedis {
    public static void main(String[] args)throws Exception {
        //获取flink的运行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        //指定数据源的端口
         DataStreamSource<String> text = env.socketTextStream("flink102", 9000, "\n");

         //lpush 1_words word
         //对数据进行组装,把String转化为Tuple2<String,String>
         DataStream<Tuple2<String, String>> wordsData = text.map(new MapFunction<String, Tuple2<String, String>>() {
            @Override
            public Tuple2<String, String> map(String value) throws Exception {
                return new Tuple2<>("1_words", value);
            }
        });

         //把数据存储到redis
        //创建redis的配置
         FlinkJedisPoolConfig conf = new FlinkJedisPoolConfig.Builder().setHost("flink102").setPort(6379).build();

         //创建redis sink
         RedisSink<Tuple2<String, String>> redisink = new RedisSink<>(conf, new MyRedisMapper());
        wordsData.addSink(redisink);

        env.execute("StreamingDemoToRedis");

    }
    public static class MyRedisMapper implements RedisMapper<Tuple2<String,String>>{


        @Override
        public RedisCommandDescription getCommandDescription() {
            return new RedisCommandDescription(RedisCommand.LPUSH);

        }

        //表示从接收的数据中 获取需要操作的redis key
        @Override
        public String getKeyFromData(Tuple2<String, String> data) {
            return data.f0;
        }

        //表示从接收的数据中 获取需要操作的redis Value
        @Override
        public String getValueFromData(Tuple2<String, String> data) {
            return data.f1;
        }
    }
}

(5)连接上flink102机器,执行nc -l 9000

[root@flink102 ~]# nc -l 9000

(6)启动代码程序,控制台打印信息,发现错误:
第 14 节  DataStream之sink(java)
(7)排查问题:

//发现连接不上
C:\Users\HP>telnet flink102 6379
正在连接flink102...无法打开到主机的连接。 在端口 6379: 连接失败


参考:Jedis连接Redis异常的问题


当telnet 已经通了,再次运行程序,没报错
第 14 节  DataStream之sink(java)

我们就可以在redis数据库,查看

[root@flink102 redis-4.0.6]# redis-cli -p 6379
127.0.0.1:6379> keys *
1) "1_words"   //数据已经进来了


查看数据

127.0.0.1:6379> lrange 1_words 0 -1
1) "gg"

查看数据数量

127.0.0.1:6379> llen 1_words
(integer) 1

数据状态

127.0.0.1:6379> monitor
OK

//输入数据:
[root@flink102 redis]# nc -l 9000
gg
hadoop
flink
kill
flume

//接收数据
1583691934.079993 [0 192.168.219.1:58607] "LPUSH" "1_words" "hadoop"
1583691938.604767 [0 192.168.219.1:58609] "LPUSH" "1_words" "flink"
1583691941.721202 [0 192.168.219.1:58611] "LPUSH" "1_words" "kill"
1583691945.638629 [0 192.168.219.1:58045] "LPUSH" "1_words" "flume"

上一篇:Flink应用程序结构开发介绍


下一篇:Flink(五) —— DataStream API