【源码】Flink 三层图结构——StreamGraph 生成前准备 Transformation

最近一直在看 StreamGraph 生成的源码,刚好有点思路,准备动手了发现,
如果不说下 Transformation 后面的 StreamGraph 会差比较多意思,
所以先做点铺垫。

## Transformation

Transformation 类是 Flink 转换算子的基类,实现类有下面这些

AbstractMultipleInputTransformation
CoFeedbackTransformation
FeedbackTransformation
KeyedMultipleInputTransformation
LegacySourceTransformation
MultipleInputTransformation
OneInputTransformation
PartitionTransformation
PhysicalTransformation
SelectTransformation
SideOutputTransformation
SinkTransformation
SourceTransformation
SplitTransformation
TwoInputTransformation
UnionTransformation

类图:

【源码】Flink 三层图结构——StreamGraph 生成前准备 Transformation

 

从这些 Transformation 中也可以看出Flink 支持的转换类型: Source、Sink、一个输入、两个输入、多个输入、Union、侧输出、Select、分区 等转换操作

## source Transformation 的起始

env.addSource(new SimpleStringSource)

调用 StreamExecutionEnvironment.scala 的 addSource 方法

def addSource[T: TypeInformation](function: SourceFunction[T]): DataStream[T] = {
    require(function != null, "Function must not be null.")
    
    val cleanFun = scalaClean(function)
    val typeInfo = implicitly[TypeInformation[T]]
    asScalaStream(javaEnv.addSource(cleanFun, typeInfo))
  }

然后调用 javaEnv.addSource 方法

StreamExecutionEnvironment.java

public <OUT> DataStreamSource<OUT> addSource(SourceFunction<OUT> function, TypeInformation<OUT> typeInfo) {
    return addSource(function, "Custom Source", typeInfo);
  }

public <OUT> DataStreamSource<OUT> addSource(SourceFunction<OUT> function, String sourceName, TypeInformation<OUT> typeInfo) {

    TypeInformation<OUT> resolvedTypeInfo = getTypeInfo(function, sourceName, SourceFunction.class, typeInfo);

    boolean isParallel = function instanceof ParallelSourceFunction;

    clean(function);

    // 创建 StreamSource 
    final StreamSource<OUT, ?> sourceOperator = new StreamSource<>(function);
    
    // 使用 StreamSource 创建 DataStreamSource 同时创建 Source 的Transformation 了, this 指 env
    return new DataStreamSource<>(this, resolvedTypeInfo, sourceOperator, isParallel, sourceName);
  } 

DataStreamSource.java 使用输入的 sourceName, operator, outTypeInfo, Parallelism 创建 LegacySourceTransformation

public DataStreamSource(
      StreamExecutionEnvironment environment,
      TypeInformation<T> outTypeInfo,
      StreamSource<T, ?> operator,
      boolean isParallel,
      String sourceName) {
    super(environment, new LegacySourceTransformation<>(sourceName, operator, outTypeInfo, environment.getParallelism()));

    this.isParallel = isParallel;
    if (!isParallel) {
      setParallelism(1);
    }
  }

最终调用到 DataStream.java 的 DataStream 方法,将生成的 LegacySourceTransformation 放入到 DataStream 中

public DataStream(StreamExecutionEnvironment environment, Transformation<T> transformation) {
    this.environment = Preconditions.checkNotNull(environment, "Execution Environment must not be null.");
    this.transformation = Preconditions.checkNotNull(transformation, "Stream Transformation must not be null.");
  }

addSource 返回一个 DataStreamSource ,transformation 是 LegacySourceTransformation,并携带 StreamExecutionEnvironment 对象,继续后面算子的调用

## map 算子看 Transformation

stream
  .map(str => str)

代码执行到 map 这一行时,会调用到 DataStream.scala 的 map 方法

def map[R: TypeInformation](fun: T => R): DataStream[R] = {
    if (fun == null) {
      throw new NullPointerException("Map function must not be null.")
    }
    val cleanFun = clean(fun)
    val mapper = new MapFunction[T, R] {
      def map(in: T): R = cleanFun(in)
    }
    // 又调用 map
    map(mapper)
  }

def map[R: TypeInformation](mapper: MapFunction[T, R]): DataStream[R] = {
    if (mapper == null) {
      throw new NullPointerException("Map function must not be null.")
    }

    val outType : TypeInformation[R] = implicitly[TypeInformation[R]]
    // stream.map 调用到 DataStream.java 中了
    asScalaStream(stream.map(mapper, outType).asInstanceOf[JavaStream[R]])
  } 

注: Flink 主要功能还是在 Java 代码中, Scala Api 就像个外壳,用 Scala 包装了一下,方便 Scala 代码调用,实际上还是会调用到 Java 代码上去

DataStream.java 的 map 方法

这里调用 transform 方法,要构建 Transformation 了,对于这个测试的写法来说, outputType 是 "String", Transformation 名是 "Map"

SimpleOperatorFactory.of(operator)) 获取的工厂类是: SimpleUdfStreamOperatorFactory str => str 就是 Udf

public <R> SingleOutputStreamOperator<R> map(MapFunction<T, R> mapper, TypeInformation<R> outputType) {
    // 可以看到 transform ,这里的 outputType 是 String 了
    return transform("Map", outputType, new StreamMap<>(clean(mapper)));
  }

public <R> SingleOutputStreamOperator<R> transform(
      String operatorName,
      TypeInformation<R> outTypeInfo,
      OneInputStreamOperator<T, R> operator) {

    return doTransform(operatorName, outTypeInfo, SimpleOperatorFactory.of(operator));
  }

 

DataStream.java 的 doTransform 方法创建 map 算子对于的 OneInputTransformation, 同时创建一个新的 DataStream: SingleOutputStreamOperator

// 真正创建 Transformation
  protected <R> SingleOutputStreamOperator<R> doTransform(
      String operatorName,
      TypeInformation<R> outTypeInfo,
      StreamOperatorFactory<R> operatorFactory) {

    // read the output type of the input Transform to coax out errors about MissingTypeInfo
    // 检验和设置 transformation 输出类型
    transformation.getOutputType();

    // 创建 一个输入的 Transformation, this.transformation 上一算子的 Transformation 做为 当前算子的 输入 Transformation
    OneInputTransformation<T, R> resultTransform = new OneInputTransformation<>(
        this.transformation,
        operatorName,
        operatorFactory,
        outTypeInfo,
        environment.getParallelism());

    @SuppressWarnings({"unchecked", "rawtypes"})
      // 创建 一个输出的 StreamOperator 也是 DataStream, 也 携带 environment
    SingleOutputStreamOperator<R> returnStream = new SingleOutputStreamOperator(environment, resultTransform);
    // 讲 创建的 Transformation 放到 ExecutionEnvironment 的 transformations 列表中
    getExecutionEnvironment().addOperator(resultTransform);
    // 返回 SingleOutputStreamOperator
    return returnStream;
  }

 

所以,执行完 map 后,返回的也是一个新的 DataStream,这不像有些用户,objectA.methodA().methodB() 每次都返回原来的 objectA

## sink Transformation 的起始

public DataStreamSink<T> addSink(SinkFunction<T> sinkFunction) {

    // read the output type of the input Transform to coax out errors about MissingTypeInfo
    // 检验输出和设置输出类型
    transformation.getOutputType();

    // configure the type if needed
    // 检查输入方法类型
    if (sinkFunction instanceof InputTypeConfigurable) {
      ((InputTypeConfigurable) sinkFunction).setInputType(getType(), getExecutionConfig());
    }
    // 创建一个 sinkOperator
    StreamSink<T> sinkOperator = new StreamSink<>(clean(sinkFunction));
    // 使用 sinkOperator 创建 DataStreamSink , 同是创建 SinkTransformation
    DataStreamSink<T> sink = new DataStreamSink<>(this, sinkOperator);
    // 把 SinkTransformation 添加到 transformations
    getExecutionEnvironment().addOperator(sink.getTransformation());
    // 返回 DataStreamSink
    return sink;
  }

DataStreamSink.java  创建 DataStreamSink 的时候,用当前的 DataStream 和 StreamSink 做参数, 当前的 DataStream 做为 StreamSink 的 input Transformation

protected DataStreamSink(DataStream<T> inputStream, StreamSink<T> operator) {
    this.transformation = new SinkTransformation<T>(inputStream.getTransformation(), "Unnamed", operator, inputStream.getExecutionEnvironment().getParallelism());
  }

在创建 Sink 的 DataStream 的时候,将 前一个算子生成的 DataStream 传入 做为了 Sink 的 input Transformation。

## 总结

从 env.addSource.map.addSink 最简单的 Flink 程序,可以看到 Flink 创建 StreamGraph 前的 Transformation 生成过程,其他如: flatMap、filter、union、process 基本类似,其他如 join、window、forward 也相差不大

比如:

val join = process.join(map)
      .where(str => str)
      .equalTo(str => str)
      .window(TumblingProcessingTimeWindows.of(Time.minutes(1)))
      .apply(new JoinFunction[String, String, String] {
        override def join(first: String, second: String): String = {
          first + ";" + second
        }
      })

从 apply 追下去,会 看到  在 WindowedStream.java 的 apply 方法中 调用了 input.transform(opName, resultType, operator) 生成了 一个输出的 Transformation

@PublicEvolving
  public <R> SingleOutputStreamOperator<R> transform(
      String operatorName,
      TypeInformation<R> outTypeInfo,
      OneInputStreamOperator<T, R> operator) {

    return doTransform(operatorName, outTypeInfo, SimpleOperatorFactory.of(operator));
  }

  protected <R> SingleOutputStreamOperator<R> doTransform(
      String operatorName,
      TypeInformation<R> outTypeInfo,
      StreamOperatorFactory<R> operatorFactory) {

    // read the output type of the input Transform to coax out errors about MissingTypeInfo
    transformation.getOutputType();

    OneInputTransformation<T, R> resultTransform = new OneInputTransformation<>(
        this.transformation,
        operatorName,
        operatorFactory,
        outTypeInfo,
        environment.getParallelism());

    @SuppressWarnings({"unchecked", "rawtypes"})
    SingleOutputStreamOperator<R> returnStream = new SingleOutputStreamOperator(environment, resultTransform);

    getExecutionEnvironment().addOperator(resultTransform);

    return returnStream;

 

Transformation 就是 用户代码,转换成 Flink 算子的结果,Transformation

欢迎关注Flink菜鸟公众号,会不定期更新Flink(开发技术)相关的推文

【源码】Flink 三层图结构——StreamGraph 生成前准备 Transformation

上一篇:Apache Flink 进阶(四):Flink on Yarn / K8s 原理剖析及实践


下一篇:Flink实例(五十七):维表join(一)Apache Flink 维表关联实战