最短路径(dijistra ,floyd)

dijistra

const int N = 10;
int used[N]; //用没有用过
int path[N]; //i的前一个节点
int dist[N]; //最短路径

void f(Graph G, int v) {
	for (int i = 0; i < N; i++) {
		used[i] = 0;
		dist[i] = G.edge[v][i];
		if (G.edge[v][i] < Max) path[i] = v;
		else path[i] = -1;
	}

	used[v] = 1;
	path[v] = -1;

	for (int i = 0; i < N; i++) {
		int _min = Max;
		int u;

		for (int j = 0; j < N; i++) {
			if (used[j] == 0 && dist[j] < _min) {
				_min = dist[j];
				u = j;
			}
			used[u] = 1;
		}

		for (int j = 0; j < N; j++) {
			if (used[j] == 0 && dist[u] + G.edge[u][j] < dist[j]) {
				dist[j] = dist[u] + G.edge[u][j];
				path[j] = u;   //u->j   j的前一个节点为u
			}
		}

	}

	
}

floyd

const int N = 10;
int A[N][N];

void floyd(int n, Graph[N][N], int path[N][N]) {
	int i, j, v;
	for (int i = 0; i < n; i++) {
		for (j = 0; j < n; j++) {
			A[i][j] = Graph[i][j];
			path[i][j] = -1;
		}
	}
	for (v = 0; v < n; v++) {   //v为中间节点
		for (i = 0; i < n; i++) {
			for (int j = 0; j < n; j++) {
				if (A[i][j] > A[i][v] + A[v][j]) {
					A[i][j] = A[i][v] + A[v][j];
					path[i][j] = v;
				}
			}
		}
	}
}


void printPath(int u, int v, int path[N][N]) {
	if (path[u][v] == -1) {
		cout << "结果";  //一段的结果;
	}
	else {
		int mid = path[u][v];
		printPath(u, mid, path);
		printPath(mid, v, path);
	}
}
上一篇:Redis进阶-无所不知的info命令诊断redis


下一篇:HDU - 6122 Color the chessboard