【luogu3388】 【模板】割点(割顶)[tarjan 割点]

P3388 【模板】割点(割顶)

放guo模板

还没有看的资料

求解割点的方法和有向图的tarjan算法类似。我们保留dfn的定义不变,由于无向图在DFS的过程中不会出现横叉边,low的定义改变为从子树中经过反祖边能够到达的时间戳最小的结点。如果结点u是整棵搜索树的根,那么它是割点当且仅当u有两个及以上的儿子。如果结点u不是搜索树的根,那么当存在v是u的儿子并且并且满足dfn[u]low[v],那么结点u也是割点。至于割边,上面不等式改成小于号即可。

#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int N=20000+5,M=100000+5,inf=0x3f3f3f3f;
int n,m,ans=0;
int idx=0,Bcnt=0,dfn[N],low[N];
bool book[N];
template<class t>void rd(t &x){
    x=0;int w=0;char ch=0;
    while(!isdigit(ch)) w|=ch=='-',ch=getchar();
    while(isdigit(ch)) x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
    x=w?-x:x;
}

int head[N],tot=0,cnte=0;
struct edge{int u,v,nxt;}e[M<<1];
void add(int u,int v){
    e[++tot]=(edge){u,v,head[u]};head[u]=tot;
}

void tarjan(int u,int fa){
    dfn[u]=low[u]=++idx;
    int kid=0;
    for(int i=head[u],v;i;i=e[i].nxt){
        v=e[i].v;
        if(!dfn[v]){
            tarjan(v,u),low[u]=min(low[v],low[u]);
            if(u==fa) ++kid;//为根节点
            else if(u!=fa&&low[v]>=dfn[u]) book[u]=1; 
        }
        else if(v!=fa) low[u]=min(low[u],dfn[v]);
    }
    if(u==fa&&kid>1) book[u]=1;
}

int main(){
    //freopen("in.txt","r",stdin);
    rd(n),rd(m);
    for(int i=1,u,v;i<=m;++i) rd(u),rd(v),add(u,v),add(v,u);
    for(int i=1;i<=n;++i)
    if(!dfn[i]) tarjan(i,i);
    for(int i=1;i<=n;++i)
    if(book[i]) ++ans;
    printf("%d\n",ans);
    for(int i=1;i<=n;++i)
    if(book[i]) printf("%d ",i);
    return 0;
}

 

上一篇:P3388 【模板】割点(割顶) 题解


下一篇:POJ 3694Network(Tarjan边双联通分量 + 缩点 + LCA并查集维护)