做Android开发的都应该知道Handler的运行机制,这个问题属于老生常谈了。
这里再简单赘述一下:
- Handler 负责发送消息;
- Looper 负责接收 Handler 发送的消息,并在合适的时间将消息回传给Handler;
- MessageQueue是一个存储消息的队列容器。
本文我们会详细完整的将Handler的运行机制梳理一遍。
一、ActivityThread类和APP的启动过程
为什么要讲ActivityThread和App的启动过程,因为Handler、Looper都是在这个阶段进行创建和初始化的。
ActivityThread就是我们常说的主线程或UI线程,ActivityThread的main方法是一个APP的真正入口,MainLooper在它的main方法中被创建。
//ActivityThread的main方法 public static void main(String[] args) { ... Looper.prepareMainLooper(); ActivityThread thread = new ActivityThread(); //在attach方法中会完成Application对象的初始化,然后调用Application的onCreate()方法 thread.attach(false); if (sMainThreadHandler == null) { sMainThreadHandler = thread.getHandler(); } ... Looper.loop(); throw new RuntimeException("Main thread loop unexpectedly exited"); }
主线程的Handler作为ActivityThread的成员变量,是在ActivityThread的main方法被执行,ActivityThread被创建时进行初始化的。MessageQueue在Looper创建的时候作为成员变量被初始化创建。
二、Handler创建Message并发送给Looper
当我们创建一个Message并交给Handler发送的时候,内部调用的代码如下:
public final boolean sendMessageDelayed(Message msg, long delayMillis) { if (delayMillis < 0) { delayMillis = 0; } return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis); }
最终调用到的是MessageQueue的enqueueMessage方法,enqueueMessage 是核心处理方法。下面是MessageQueue.enqueueMessage方法的代码:
boolean enqueueMessage(Message msg, long when) { ...synchronized (this) { ... msg.markInUse(); msg.when = when; Message p = mMessages; boolean needWake; if (p == null || when == 0 || when < p.when) { // New head, wake up the event queue if blocked. msg.next = p; mMessages = msg; needWake = mBlocked; } else { // Inserted within the middle of the queue. Usually we don't have to wake // up the event queue unless there is a barrier at the head of the queue // and the message is the earliest asynchronous message in the queue. needWake = mBlocked && p.target == null && msg.isAsynchronous(); Message prev; for (;;) { prev = p; p = p.next; if (p == null || when < p.when) { break; } if (needWake && p.isAsynchronous()) { needWake = false; } } msg.next = p; // invariant: p == prev.next prev.next = msg; } // We can assume mPtr != 0 because mQuitting is false. if (needWake) { nativeWake(mPtr); } } return true; }
这段代码处理的事情就是将进入消息队列的Message插入到合适的位置,并通过needWake判断是否需要调用底层唤醒整个消息队列。
结合上述的代码,我们可以得出整体的逻辑如下所示:
+-------+ +------------+ +------------------+ +--------------+ |Handler| |MessageQueue| |NativeMessageQueue| |Looper(Native)| +--+----+ +-----+------+ +---------+--------+ +-------+------+ | | | | | | | | sendMessage()| | | | +----------> | | | | | | | | |enqueueMessage()| | | +--------------> | | | | | | | | | | | | | nativeWake() | | | | wake() | | | +------------------> | | | | | | | | | wake() | | | +------------------> | | | | | | | | | | | | |write(mWakeWritePipeFd, "W", 1) | | | | | | | | + + + +
三、Looper循环处理MessageQueue的Message
我们知道Loop循环处理Message调用的方法是 Looper.loop()。
而Looper.loop执行的代码:
/** * Run the message queue in this thread. Be sure to call * {@link #quit()} to end the loop. */ public static void loop() { final Looper me = myLooper(); ... for (;;) { Message msg = queue.next(); // might block if (msg == null) { // No message indicates that the message queue is quitting. return; } // This must be in a local variable, in case a UI event sets the logger final Printer logging = me.mLogging; if (logging != null) { logging.println(">>>>> Dispatching to " + msg.target + " " + msg.callback + ": " + msg.what); } ... } }
下面是MessageQueue的next方法的代码:
Message next() { // Return here if the message loop has already quit and been disposed. // This can happen if the application tries to restart a looper after quit // which is not supported. final long ptr = mPtr; if (ptr == 0) { return null; } int pendingIdleHandlerCount = -1; // -1 only during first iteration int nextPollTimeoutMillis = 0; for (;;) { if (nextPollTimeoutMillis != 0) { Binder.flushPendingCommands(); } nativePollOnce(ptr, nextPollTimeoutMillis); synchronized (this) { // Try to retrieve the next message. Return if found. final long now = SystemClock.uptimeMillis(); Message prevMsg = null; Message msg = mMessages; if (msg != null && msg.target == null) { // Stalled by a barrier. Find the next asynchronous message in the queue. do { prevMsg = msg; msg = msg.next; } while (msg != null && !msg.isAsynchronous()); } if (msg != null) { if (now < msg.when) { // Next message is not ready. Set a timeout to wake up when it is ready. nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE); } else { // Got a message. mBlocked = false; if (prevMsg != null) { prevMsg.next = msg.next; } else { mMessages = msg.next; } msg.next = null; if (DEBUG) Log.v(TAG, "Returning message: " + msg); msg.markInUse(); return msg; } } else { // No more messages. nextPollTimeoutMillis = -1; } // Process the quit message now that all pending messages have been handled. if (mQuitting) { dispose(); return null; } // If first time idle, then get the number of idlers to run. // Idle handles only run if the queue is empty or if the first message // in the queue (possibly a barrier) is due to be handled in the future. if (pendingIdleHandlerCount < 0 && (mMessages == null || now < mMessages.when)) { pendingIdleHandlerCount = mIdleHandlers.size(); } if (pendingIdleHandlerCount <= 0) { // No idle handlers to run. Loop and wait some more. mBlocked = true; continue; } if (mPendingIdleHandlers == null) { mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)]; } mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers); } // Run the idle handlers. // We only ever reach this code block during the first iteration. for (int i = 0; i < pendingIdleHandlerCount; i++) { final IdleHandler idler = mPendingIdleHandlers[i]; mPendingIdleHandlers[i] = null; // release the reference to the handler boolean keep = false; try { keep = idler.queueIdle(); } catch (Throwable t) { Log.wtf(TAG, "IdleHandler threw exception", t); } if (!keep) { synchronized (this) { mIdleHandlers.remove(idler); } } } // Reset the idle handler count to 0 so we do not run them again. pendingIdleHandlerCount = 0; // While calling an idle handler, a new message could have been delivered // so go back and look again for a pending message without waiting. nextPollTimeoutMillis = 0; } }
这段代码处理的事情就是不断从MessageQueue中取出消息,如果没有消息的时候会给nativePollOnce的nextPollTimeoutMillis设置为-1,这时消息队列就处于阻塞状态了。
结合上述代码,可以得出逻辑如下图所示:
+------+ +------------+ +------------------+ +--------------+ |Looper| |MessageQueue| |NativeMessageQueue| |Looper(Native)| +--+---+ +------+-----+ +---------+--------+ +-------+------+ | | | | +-------------------------------------------------------------------------------+ |[msg loop] | next() | | | | | +------------> | | | | | | | | | | | | | | | | | | | nativePollOnce() | | | | | | pollOnce() | | | | | +----------------> | | | | | | | | | | | | | | | | | | | | | | | | | pollOnce() | | | | | +-----------------> | | | | | | | | | | | | | epoll_wait() | | | | +--------+ | | | | | | | | | | | | | | | | | | | | <------+ | | | | | | awoken() | | + + + + | +-------------------------------------------------------------------------------+
四、总结
1. 相关知识点
HandlerThread、ThreadLocal、Linux Epoll 机制。
HandlerThread:
HandlerThread相比Thread最大的优势在于引入MessageQueue概念,可以进行多任务队列管理。HandlerThread背后只有一个线程,所以任务是串行依次执行的。串行相对于并行来说更安全,各任务之间不会存在多线程安全问题。HandlerThread所产生的线程会一直存活,Looper会在该线程中持续的检查MessageQueue,并开启消息处理的循环。这一点和Thread(),AsyncTask都不同,thread实例的重用可以避免线程相关的对象的频繁重建和销毁。 getLooper().quit();来退出这个线程,其实原理很简单,就是改变在消息循环里面标志位,退出整个while循环,使线程执行完毕。
注意:要想更新界面内容,还是需要使用主线程的Looper,不然的话还是会抛错误。
2. 推荐文章:
1. Android Handler机制 - MessageQueue如何处理消息:https://blog.csdn.net/lovelease/article/details/81988696
2. ActivityThread的理解和APP的启动过程:https://blog.csdn.net/hzwailll/article/details/85339714