Task7.手写数字识别

用PyTorch完成手写数字识别

 import numpy as np
import torch
from torch import nn, optim
import torch.nn.functional as F
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision import datasets batch_size = 128
learning_rate = 0.01
num_epoch = 10 # 实例化MNIST数据集对象
train_data = datasets.MNIST('./dataset', train=True, transform=transforms.ToTensor(), download=True)
test_data = datasets.MNIST('./dataset', train=False, transform=transforms.ToTensor(), download=True) # train_loader:以batch_size大小的样本组为单位的可迭代对象
train_loader = DataLoader(train_data, batch_size, shuffle=True)
test_loader = DataLoader(test_data) class CNN(nn.Module):
def __init__(self, in_dim, out_dim):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(in_dim, 6, 3, stride=1, padding=1)
self.batch_norm1 = nn.BatchNorm2d(6)
self.relu = nn.ReLU(True)
self.conv2 = nn.Conv2d(6, 16, 5, stride=1, padding=0)
self.pool = nn.MaxPool2d(2, 2)
self.batch_norm2 = nn.BatchNorm2d(16) self.fc1 = nn.Linear(400, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, out_dim) def forward(self, x):
x = self.batch_norm1(self.conv1(x))
x = F.relu(x)
x = self.pool(x)
x = self.batch_norm2(self.conv2(x))
x = self.relu(x)
x = self.pool(x)
x = x.view(x.size(0), -1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x def print_model_name(self):
print("Model Name: CNN") class Cnn(nn.Module):
def __init__(self, in_dim, n_class):
super(Cnn, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_dim, 6, 3, stride=1, padding=1),
nn.ReLU(True),
nn.MaxPool2d(2, 2),
nn.Conv2d(6, 16, 5, stride=1, padding=0),
nn.ReLU(True),
nn.MaxPool2d(2, 2)) self.fc = nn.Sequential(
nn.Linear(400, 120), nn.Linear(120, 84), nn.Linear(84, n_class)) def forward(self, x):
# print(x.size()) torch.Size([1024, 1, 28, 28])
out = self.conv(x)
out = out.view(out.size(0), -1)
# print(out.size()) = torch.Size([1024, 400])
out = self.fc(out)
# print(out.size()) torch.Size([1024, 10])
return out def print_model_name(self):
print("Model Name: Cnn") isGPU = torch.cuda.is_available()
print(isGPU)
model = CNN(1, 10)
if isGPU:
model = model.cuda()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=learning_rate)
for epoch in range(num_epoch):
running_acc = 0.0
running_loss = 0.0
for i, data in enumerate(train_loader, 1): # train_loader:以batch_size大小的样本组为单位的可迭代对象
img, label = data
img = Variable(img)
label = Variable(label)
if isGPU:
img = img.cuda()
label = label.cuda()
# forward
out = model(img)
loss = criterion(out, label)
# print(label)
# backward
optimizer.zero_grad()
loss.backward()
optimizer.step() _, pred = torch.max(out, dim=1) # 按维度dim 返回最大值
running_loss += loss.item()*label.size(0)
current_num = (pred == label).sum() # variable
acc = (pred == label).float().mean() # variable
running_acc += current_num.item() if i % 100 == 0:
print("epoch: {}/{}, loss: {:.6f}, running_acc: {:.6f}"
.format(epoch+1, num_epoch, loss.item(), acc.item()))
print("epoch: {}, loss: {:.6f}, accuracy: {:.6f}".format(epoch+1, running_loss, running_acc/len(train_data))) model.eval()
current_num = 0
for i , data in enumerate(test_loader, 1):
img, label = data
if isGPU:
img = img.cuda()
label = label.cuda()
with torch.no_grad():
img = Variable(img)
label = Variable(label)
out = model(img)
_, pred = torch.max(out, 1)
current_num += (pred == label).sum().item() print("Test result: accuracy: {:.6f}".format(float(current_num/len(test_data)))) torch.save(model.state_dict(), './cnn.pth') # 保存模型
上一篇:深度学习之PyTorch实战(3)——实战手写数字识别


下一篇:Java之异常机制(1) - 高效处理异常