代码
import torch
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
from torchvision import transforms #从torchvision中引入图像转换
#采用随机批量梯度下降,batch_size设为64
batch_size = 64
#用Compose串联多个“图片变换操作”(此处将ToTensor和Normalize组合)
transform = transforms.Compose([
#ToTensor()将shape为(H, W, C)de numpy.darray或者img转为shape为(C, H, W)的tensor,其将每一个数值归一化到(0,1)
transforms.ToTensor(),
#标准化:使用公式" (x - mean) / std ",将每一个元素分布到(-1, 1)
transforms.Normalize(mean = (0.1307,), std = (0.3081,)) #由于mnist数据集的图片均为灰度图片(单通道),所以mean和std各自值输入了一个值
])
# 获取训练集
train_dataset = datasets.MNIST(
#指定保存路径
root = "./mnist",
#获取的是训练集
train = True,
#若在指定路径下找不到目标文件则会自动下载
download = True,
#对所获取的数据集执行上述的transform处理
transform = transform
)
# 获取测试集
test_dataset = datasets.MNIST(
root = "./mnist",
train = False,
download = True,
transform = transform
)
# 定义数据加载器
train_loader = DataLoader(train_dataset, shuffle = True, batch_size = batch_size)
test_loader = DataLoader(test_dataset, shuffle = False, batch_size = batch_size)
# 定义网络模型
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
# 第一层卷积层采用Conv2d模块:输入1维,输出10维,卷积核尺寸5x5(此处输入输出的维度表示的是通道数),不扩充(padding),不设偏置
self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5, padding=0, bias=False)
self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)
# 池化层采用MaxPool2d模块:kernel_size=2表示池化窗口大小为2x2
self.pooling = torch.nn.MaxPool2d(kernel_size=2)
self.fc = torch.nn.Linear(320, 10)
def forward(self, x):
#定义batch的大小是数据张量的第0个维度的数据,也就是每次传入的批量大小
batch_size = x.size(0)
#先做卷积再做池化,然后激活
x = F.relu(self.pooling(self.conv1(x)))
x = F.relu(self.pooling(self.conv2(x)))
# 改变x的形状,为了匹配FC层的输入(传入fc层的需为二维矩阵)
x = x.view(batch_size, -1)
#送入全连接层
x = self.fc(x)
return x
# 实例化模型
model = Model()
# 构造多分类交叉熵损失函数
criterion = torch.nn.CrossEntropyLoss()
# 构造优化器:优化模型中的所有参数,学习率=0.01, 加入一个冲量0.5
optimizer = torch.optim.SGD(model.parameters(), lr = 0.01, momentum=0.5)
# 定义训练过程
def train(epoch):
running_loss = 0
for batch_idx, data in enumerate(train_loader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if(batch_idx+1) % 300 ==0:
print(f' [Epoch:{epoch+1},Btach_idx:{batch_idx+1}],loss:{running_loss / 300:.3f} ')
running_loss = 0
# 定义测试过程
def test():
# 已经预测结束且预测正确的样本数(初始化为0 )
correct = 0
# 已经预测结束的样本数(初始化为0)
total = 0
with torch.no_grad(): #测试过程不需要梯度优化
for data in test_loader:
images, labels = data
outputs = model(images)
# model最后输出的是一个10维的矩阵(1行10列),返回‘预测最大值predicted’和‘预测最大值下标’_
_, predicted = torch.max(outputs.data, dim = 1)
#更新已预测结束的样本数
total += labels.size(0)
# 更新已预测结束且预测正确的样本数
correct += (predicted == labels).sum().item()
print(f' Accuracy on testdatset:{100 * (correct/total):.2f}% ') #输出准确率
# 开始运行
if __name__ == '__main__':
for epoch in range(10):
train(epoch)
test()
运行效果
[Epoch:1,Btach_idx:300],loss:0.627
[Epoch:1,Btach_idx:600],loss:0.190
[Epoch:1,Btach_idx:900],loss:0.143
Accuracy on testdataset:96.71%
[Epoch:2,Btach_idx:300],loss:0.115
[Epoch:2,Btach_idx:600],loss:0.097
[Epoch:2,Btach_idx:900],loss:0.086
Accuracy on testdataset:97.69%
[Epoch:3,Btach_idx:300],loss:0.080
[Epoch:3,Btach_idx:600],loss:0.073
[Epoch:3,Btach_idx:900],loss:0.069
Accuracy on testdataset:97.86%
[Epoch:4,Btach_idx:300],loss:0.062
[Epoch:4,Btach_idx:600],loss:0.064
[Epoch:4,Btach_idx:900],loss:0.061
Accuracy on testdataset:98.44%
[Epoch:5,Btach_idx:300],loss:0.052
[Epoch:5,Btach_idx:600],loss:0.051
[Epoch:5,Btach_idx:900],loss:0.059
Accuracy on testdataset:98.50%
[Epoch:6,Btach_idx:300],loss:0.049
[Epoch:6,Btach_idx:600],loss:0.048
[Epoch:6,Btach_idx:900],loss:0.050
Accuracy on testdataset:98.45%
[Epoch:7,Btach_idx:300],loss:0.047
[Epoch:7,Btach_idx:600],loss:0.041
[Epoch:7,Btach_idx:900],loss:0.045
Accuracy on testdataset:98.36%
[Epoch:8,Btach_idx:300],loss:0.040
[Epoch:8,Btach_idx:600],loss:0.042
[Epoch:8,Btach_idx:900],loss:0.041
Accuracy on testdataset:98.73%
[Epoch:9,Btach_idx:300],loss:0.032
[Epoch:9,Btach_idx:600],loss:0.041
[Epoch:9,Btach_idx:900],loss:0.038
Accuracy on testdataset:98.57%
[Epoch:10,Btach_idx:300],loss:0.033
[Epoch:10,Btach_idx:600],loss:0.035
[Epoch:10,Btach_idx:900],loss:0.036
Accuracy on testdataset:98.59%
补充
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
# 第一层卷积层采用Conv2d模块:输入1维,输出10维,卷积核尺寸5x5(此处输入输出的维度表示的是通道数),不扩充(padding),不设偏置
self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5, padding=0, bias=False)
self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)
# 池化层采用MaxPool2d模块:kernel_size=2表示池化窗口大小为2x2
self.pooling = torch.nn.MaxPool2d(kernel_size=2)
self.fc = torch.nn.Linear(320, 10)
def forward(self, x):
#定义batch的大小是数据张量的第0个维度的数据,也就是每次传入的批量大小
batch_size = x.size(0)
#先做卷积再做池化,然后激活
x = F.relu(self.pooling(self.conv1(x)))
x = F.relu(self.pooling(self.conv2(x)))
# 改变x的形状,为了匹配FC层的输入(传入fc层的需为二维矩阵)
x = x.view(batch_size, -1)
#送入全连接层
x = self.fc(x)
return x
Q:self.fc = torch.nn.Linear(320, 10)
中的320在不通过手算推理的前提下如何得知?
A:随便填一个数字,运行代码,通过查看报错信息获取FC层的真实输入维数