CAN打包解包公用函数

因CAN报文存在motorola和Intel不同字序,整型、浮点型,有无符号等不同设计,打包解包的代码非常容易出错,而且很难检查验证。

在项目开发中,已形成实用的通用函数,现分享如下(public和CanProc两模块)。

public.h

#ifndef __PUBLIC__H_
#define __PUBLIC__H_

#if 1
typedef signed char sint8;
typedef unsigned char uint8;
typedef signed short sint16;
typedef unsigned short uint16;
//typedef signed long sint32;		//32位系统和64位系统,long字节不同,32位系统=4字书,
                                    //64位系统=8字节
//typedef unsigned long uint32;		//不同平台,int字节不同
typedef signed int sint32;          //当前因simulink生成的代码,int是4字节,故保持一致                
typedef unsigned int uint32;
typedef unsigned long long uint64;
typedef signed long long sint64;

typedef float float32;
typedef double float64;

#endif

//获得U32的n位的值
#define GetBitNValue(dword, n, offset)         (((uint32)(dword) >> (offset)) & \
                                                ((1UL << (n)) - 1))  
/*
************************************************************************
* Description : 获得64位数值中的N位的值
* Parameters  : ldword,64位数
				n,想获取的位数
				byOffset,偏移值
* Returns	  : 想要获得的结果
* Notes 	  : n和byOffset均不能超过63
************************************************************************
*/
#define GetNBitValueOfU64(ldword, n, byOffset)   (((uint64)(ldword) >> (byOffset)) & \
                                                  (((uint64)1 << (n)) - 1))  

#define TestBit(b,offset)           (1U & ((b)>>(offset)))       // 检查状态字中的某一位是否置位
#define SetBit(b,offset)            ((b) |= (1U<<(offset)))      // 置位状态字中的某一位
#define ResetBit(b,offset)          ((b) &= (~(1U<<(offset))))   // 复位状态字中的某一位
#define ArrCountOf(a)               (sizeof(a) / sizeof(a[0]))

extern void SetBitOfU32Value(uint32 *pdwData, uint8 n, uint8 byOffset, uint32 dwValue);
extern void SetBitOfU8Value(uint8 *pbyData, uint8 n, uint8 byOffset, uint8 byValue);
extern void SetNBitValueOfU64(uint64 *pldwData, uint8 n, uint8 byOffset, uint64 ldwValue);

#endif

public.c


#include "public.h"

/*
************************************************************************
* Description : 设置32位值中的N位的值
* Parameters  : pdwData,需要改的值指针
                n,修改的位数
                byOffset,偏移
                dwValue,设置值
* Returns     : none
* Notes       : 
************************************************************************
*/
extern void SetBitOfU32Value(uint32 *pdwData, uint8 n, uint8 byOffset, uint32 dwValue)
{
    uint32 tmp = *pdwData;
    uint32 mask;

    mask = (((uint32)1u << n) - 1) << byOffset;
    tmp &= ~mask;                                    //先清0
    tmp |= (dwValue << byOffset) & mask;             //值也需要保证没有更多的位

    *pdwData = tmp;
}

/*
************************************************************************
* Description : 设置8位值中的N位的值
* Parameters  : pbyData,需要改的值指针
                n,修改的位数
                byOffset,偏移
                byValue,设置值
* Returns     : none
* Notes       : 
************************************************************************
*/
extern void SetBitOfU8Value(uint8 *pbyData, uint8 n, uint8 byOffset, uint8 byValue)
{
    uint8 tmp = *pbyData;
    uint8 mask;

    mask = (((uint8)1u << n) - 1) << byOffset;
    tmp &= ~mask;                                    //先清0 
    tmp |= (byValue << byOffset) & mask;             //值也需要保证没有更多的位

    *pbyData = tmp;
}

/*
************************************************************************
* Description : 设置64位值中的N位的值
* Parameters  : pldwData,需要设置的值的指针
                n,修改的位数
                byOffset,偏移值
                ldwValue,设置值
* Returns     : none
* Notes       : n和byOffset均不能超过63
************************************************************************
*/
extern void SetNBitValueOfU64(uint64 *pldwData, uint8 n, uint8 byOffset, uint64 ldwValue)
{
    uint64 tmp;
    uint64 mask;
    
    if (pldwData == NULL)
    {
        return;
    }

    mask = (((uint64)1 << n) - 1) << byOffset;
    tmp = *pldwData;
    tmp &= ~mask;                                        //先清0
    tmp |= (ldwValue << byOffset) & mask;                //值也需要保证没有更多的位;

    *pldwData = tmp;
}

CanProc,h


#ifndef _CAN_PROC_H_
#define _CAN_PROC_H_

//#include "public.h"  //某些情况下需要

/*
************************************************************************
* Description : CAN打包解包的字节序和数据类型整合
* Parameters  : (都是DBC相关的信息)
                littleEndian,大小端 0-大端motorola 1-小端intel
                isSigned,有无符号 unsigned - 0 signed- 1 float - 1 double - 1
                ValueType,数据类型 Integer(unsigned/signed) - 0, float - 1, double - 2
* Returns     : uint32, 集合
* Notes       : 
************************************************************************
*/
#define GetCanSigMsg(littleEndian, isSigned, ValueType)    ((((littleEndian)&0xFFUL) << 16) | \
                                                            (((isSigned)&0xFFUL) << 8) | \
                                                            ((ValueType)&0xFFUL))

extern void CanPack(float32 value, uint8 *data, uint8 startBit, uint8 BitLength, 
                    uint32 ValueMsg, float32 factor, float32 offset);
extern float32 CanUnpack(const uint8 *data, uint8 startBit, uint8 BitLength, 
                         uint32 ValueMsg, float32 factor, float32 offset);                       
#endif

CanProc.c


#include "CanProc.h"
#include "public.h"

/*
************************************************************************
* Description : CAN报文打包 发送的前置
* Parameters  : value, 值
                data, CAN发送报文数据buf首地址
                ValueMsg,字节序和数据类型等信息的一个集合 见GetCanSigMsg()
                isSigned,有无符号 unsigned - 0 signed- 1 Single - 1 double - 1
                ValueType,数据类型 Integer(unsigned/signed) - 0, Single - 1, double - 2
                factor,分辨率
                offset,偏移量
                
* Returns     : 
* Notes       : 1)只支持8字节数据 有符号/无符号(整型)、浮点型;大小端
                另外 嵌入式中不支持double,将其处理成float,若移植为
                其他计算机用途,注意修改
                2)因运行效率问题,取消使用sint64(BinaryValue、mask、signedMask)    
                改为sint32,若有需要使用double,则需要改回
                //另外 负浮点型直接强制转化为unsigned,是未定义的行为
************************************************************************
*/
extern void CanPack(float32 value, uint8 *data, uint8 startBit, uint8 BitLength, 
                    uint32 ValueMsg, float32 factor, float32 offset)
{
    float32 tmp;
    sint32 BinaryValue = 0;
    
    sint8 BytePos;          // 当前操作的data[BytePos]    
    sint8 BitOffset;        //在data[BytePos]中的起始bit
    sint8 ValuePos;         //当前处理的在BinaryValue的bit位置
    sint8 DealLen;          //处理的数据位数
    sint8 RemainLen;        //剩余未处理的数据位数
    uint8 byValue;

    if (data == NULL)
    {
        return;
    }
    
    tmp = (value - offset) / factor;
    
    // 获得数据的二进制码
    switch(ValueMsg & 0xFF)
    {
        case 0: //interge
        {
            if (!((ValueMsg>>8) & 0xFF))    //无符号型
            {
                if (tmp < 0)
                {
                    tmp = 0;
                }
            }
            BinaryValue = (sint32)tmp;
        }
        break;
        case 1: //float
        {
            if (BitLength != 32)
            {
                BinaryValue = 0;
            }
            else
            {
                BinaryValue = *(sint32*)&tmp;      
            }
        }
        break;
        case 2:  //double    //
        default:
        {
            /* //double的预留代码   
            if (BitLength != 64)
            {
                BinaryValue = 0;
            }
            else
            {
                float64 dtmp = tmp;
                BinaryValue = *(sint64*)&dtmp;
            }
            */
            
            BinaryValue = 0;
        }
        break;
    }

    //buff填充 从signal的低字节处理,逐字节处理
    BytePos = startBit >> 3;                        //除8
    RemainLen = BitLength;
    BitOffset = startBit - (BytePos<<3);
    ValuePos = 0;                                  
    if ((ValueMsg>>16) & 0xFF) //Intel little endian
    {
        do
        {
            DealLen = (RemainLen < 8-BitOffset) ? RemainLen : (8-BitOffset);
            byValue = (uint8)(BinaryValue >> ValuePos);
            
            SetBitOfU8Value(data + BytePos, DealLen, BitOffset, byValue);
            
            BytePos++;
            ValuePos += DealLen;
            RemainLen -= DealLen;
            BitOffset = 0;
            
        }while (RemainLen);
    }
    else //motorola / big endian mode
    {
        do
        {
            DealLen = (RemainLen < 8-BitOffset) ? RemainLen : (8-BitOffset);
            byValue = (uint8)(BinaryValue >> ValuePos);
            
            SetBitOfU8Value(data + BytePos, DealLen, BitOffset, byValue);
            
            BytePos--;
            ValuePos += DealLen;
            RemainLen -= DealLen;
            BitOffset = 0;
            
        }while (RemainLen);
    }
}

/*
************************************************************************
* Description : CAN报文解包
* Parameters  : data, CAN报文数据buf首地址
                startBit,起始位
                BitLength,位长度
                ValueMsg,字节序和数据类型等信息的一个集合 见GetCanSigMsg()
                factor,分辨率
                offset,偏移量
                
* Returns     : 解析结果
* Notes       : 1)只支持8字节数据 有符号/无符号(整型)、浮点型;大小端
                另外 嵌入式中不支持double,将其处理成float,若移植为
                其他计算机用途,注意修改
                此函数直接根据dbc做处理 
                2)因运行效率问题,取消使用sint64(BinaryValue、mask、signedMask)    
                改为sint32,若有需要使用double,则需要改回
************************************************************************
*/
extern float32 CanUnpack(const uint8 *data, uint8 startBit, uint8 BitLength, 
                         uint32 ValueMsg, float32 factor, float32 offset)
{
    float32 rt = 0;
    sint32 tmp;
    sint32 BinaryValue = 0;
    sint32 mask;
    uint32 signedMask;
    
    sint8 BytePos;          // 当前操作的data[BytePos]    
    sint8 ValuePos;         //当前处理的在BinaryValue的bit位置
    sint8 BitOffset;        //在data[BytePos]中的起始bit
    sint8 DealLen;          //处理的数据位数
    sint8 RemainLen;        //剩余未处理的数据位数
    

    if (data == NULL)
    {   
        return 0;
    }

    // 从signal的低字节处理,逐字节处理
    BytePos = startBit >> 3;                        //除8
    RemainLen = BitLength;
    BitOffset = startBit - (BytePos<<3);
    ValuePos = 0;
    if ((ValueMsg>>16) & 0xFF)  //Intel little endian
    {
        do
        {
            DealLen = (RemainLen < 8-BitOffset) ? RemainLen : (8-BitOffset);

            tmp = GetBitNValue(data[BytePos], DealLen, BitOffset);
            BinaryValue += (tmp << ValuePos);
            
            BytePos++;
            RemainLen -= DealLen;
            BitOffset = 0;
            ValuePos += DealLen;
            
        }while (RemainLen);
    }
    else //motorola / big endian mode
    {
        do
        {
            DealLen = (RemainLen < 8-BitOffset) ? RemainLen : (8-BitOffset);

            tmp = GetBitNValue(data[BytePos], DealLen, BitOffset);
            BinaryValue += (tmp << ValuePos);
            
            BytePos--;
            RemainLen -= DealLen;
            BitOffset = 0;
            ValuePos += DealLen;
            
        }while (RemainLen);
    }

    if ((ValueMsg>>8) & 0xFF)
    {
        mask = (1UL << (BitLength - 1));
        if ((BinaryValue & mask) == mask) 
        {
            signedMask = ~((1UL << BitLength) - 1);  
            BinaryValue |= (-1L & signedMask);     //高位填充,扩展为32位/64位
        }
    }

    switch(ValueMsg & 0xFF)
    {
        case 0: //interge
        {
            rt = (float32)BinaryValue * factor + offset;
        }
        break;
        case 1: //float
        {
            if (BitLength != 32)
            {
                rt = 0;
            }
            else
            {
                rt = *(float32*)(&BinaryValue) * factor + offset;
            }
        }
        break;
        case 2:  //double  //嵌入式不支持  
        default:
        {
            /* //double的预留代码  
            if (BitLength != 64)
            {
                rt = 0;
            }
            else
            {
                rt = (float32)(*(float64*)(&BinaryValue) * factor + offset);
            }
            */

            rt = 0;
        }
        break;
    }
    
    return rt;
}

说明:CanProc.h为使用接口,已在实际项目中测试使用。

根据实测,使用英飞凌TC234,100Mhz主频,其发送一帧20信号的8字节扩展帧的处理时间约为41us,接收处理一帧11信号的8字节扩展帧处理时间约为10us;可以说控制器对收发的处理速度非常优秀的。

以下是使用样例

CAN打包解包公用函数

CAN打包解包公用函数

另外,我们在实际中,运用这两个接口,用simulink实现了很好的自动代码生成。 

上一篇:Gin上传文件到MongoDB gridfs


下一篇:Ubuntu20再次安装