1088: [SCOI2005]扫雷Mine
Description
相信大家都玩过扫雷的游戏。那是在一个n*m的矩阵里面有一些雷,要你根据一些信息找出雷来。万圣节到了
,“余”人国流行起了一种简单的扫雷游戏,这个游戏规则和扫雷一样,如果某个格子没有雷,那么它里面的数字
表示和它8连通的格子里面雷的数目。现在棋盘是n×2的,第一列里面某些格子是雷,而第二列没有雷,如下图:
由于第一列的雷可能有多种方案满足第二列的数的限制,你的任务即根据第二列的信息确定第一列雷有多少种摆放
方案。
Input
第一行为N,第二行有N个数,依次为第二列的格子中的数。(1<= N <= 10000)
Output
一个数,即第一列中雷的摆放方案数。
Sample Input
2
1 1
1 1
Sample Output
2
分析:
这道题其实很简单,主要是当有一段互相影响的数出来的时候.第一个数确定之后,之后的每个数其实都是确定的.因为你放下去一个的时候,是会制约3个数.但是因为当你放下去之前.之前的雷都是放好的.而第一个制约你的数其实就已经确定这个数的大小了.所以这里只需要枚举第一个位置雷的情况就好.反正答案就只有1或者2.就这样
#include<cstdio>
#include<algorithm>
using namespace std;
int f[10010],line[10010],n;
int main()
{
int ans=2;
scanf("%d",&n);
for(int i=1;i<=n;++i)
scanf("%d",&line[i]);
f[1]=0;
for(int i=2;i<=n;++i)
{
f[i]=line[i-1]-f[i-1]-f[i-2];
if(f[i]!=1&&f[i]!=0){
ans--;break;
}
if(i==n){
if(line[i]!=f[i-1]+f[i]){
ans--;
break;
}
}
}
f[1]=1;
for(int i=2;i<=n;++i)
{
f[i]=line[i-1]-f[i-1]-f[i-2];
if(f[i]!=1&&f[i]!=0){
ans--;break;
}
if(i==n){
if(line[i]!=f[i-1]+f[i]){
ans--;
break;
}
}
}
printf("%d",ans);
return 0;
}