1 数据源
知乎 话题『美女』下所有问题中回答所出现的图片
2 抓取工具
Python 3,并使用第三方库 Requests、lxml、AipFace,代码共 100 + 行
3 必要环境
Mac / Linux / Windows (Linux 没测过,理论上可以。Windows 之前较多反应出现异常,后查是 windows 对本地文件名中的字符做了限制,已使用正则过滤),无需登录知乎(即无需提供知乎帐号密码),人脸检测服务需要一个百度云帐号(即百度网盘 / 贴吧帐号)
4 人脸检测库
AipFace,由百度云 AI 开放平台提供,是一个可以进行人脸检测的 Python SDK。可以直接通过 HTTP 访问,免费使用
http://ai.baidu.com/ai-doc/FACE/fk3co86lr
5 检测过滤条件
- 过滤所有未出现人脸图片(比如风景图、未露脸身材照等)
- 过滤所有非女性(在抓取中,发现知乎男性图片基本是明星,故不考虑;存在 AipFace 性别识别不准的情况)
- 过滤所有非真实人物,比如动漫人物 (AipFace Human 置信度小于 0.6)
- 过滤所有颜值评分较低图片(AipFace beauty 属性小于 45,为了节省存储空间;再次声明,AipFace 评分无任何客观性)
在这里还是要推荐下我自己建的Python开发学习群:810735403
6 实现逻辑
- 通过 Requests 发起 HTTP 请求,获取『美女』下的部分讨论列表
- 通过 lxml 解析抓取到的每个讨论中 HTML,获取其中所有的 img 标签相应的 src 属性
- 通过 Requests 发起 HTTP 请求,下载 src 属性指向图片(不考虑动图)
- 通过 AipFace 请求对图片进行人脸检测
- 判断是否检测到人脸,并使用 『4 检测过滤条件』过滤
- 将过滤后的图片持久化到本地文件系统,文件名为 颜值 + 作者 + 问题名 + 序号
- 返回第一步,继续
7 抓取结果
直接存放在文件夹中(angelababy 实力出境)。另外说句,目前抓下来的图片,除 baby 外,88 分是最高分。个人对其中的排序表示反对,老婆竟然不是最高分
8 代码
- 8.1 直接使用 百度云 Python-SDK 代码 —— 已移除
- 8.2不使用 SDK,直接构造 HTTP 请求版本。直接使用这个版本有个好处,就是不依赖于 SDK 的版本(百度云现在有两个版本的接口 —— V2 和 V3。现阶段,百度云同时支持两种接口,所以直接使用 SDK 是没问题的。等以后哪一天百度不支持 V2 了,就务必升级
SDK 或使用这个直接构造 HTTP 版本)
1 #coding: utf-8 2 3 import time 4 import os 5 import re 6 7 import requests 8 from lxml import etree 9 10 from aip import AipFace 11 12 #百度云 人脸检测 申请信息 13 #唯一必须填的信息就这三行 14 APP_ID = "xxxxxxxx" 15 API_KEY = "xxxxxxxxxxxxxxxxxxxxxxxx" 16 SECRET_KEY = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx" 17 18 # 文件存放目录名,相对于当前目录 19 DIR = "image" 20 # 过滤颜值阈值,存储空间大的请随意 21 BEAUTY_THRESHOLD = 45 22 23 #浏览器中打开知乎,在开发者工具复制一个,无需登录 24 #如何替换该值下文有讲述 25 AUTHORIZATION = "oauth c3cef7c66a1843f8b3a9e6a1e3160e20" 26 27 #以下皆无需改动 28 29 #每次请求知乎的讨论列表长度,不建议设定太长,注意节操 30 LIMIT = 5 31 32 #这是话题『美女』的 ID,其是『颜值』(20013528)的父话题 33 SOURCE = "19552207" 34 35 #爬虫假装下正常浏览器请求 36 USER_AGENT = "Mozilla/5.0 (Windows NT 5.1) AppleWebKit/534.55.3 (KHTML, like Gecko) Version/5.1.5 Safari/534.55.3" 37 #爬虫假装下正常浏览器请求 38 REFERER = "https://www.zhihu.com/topic/%s/newest" % SOURCE 39 #某话题下讨论列表请求 url 40 BASE_URL = "https://www.zhihu.com/api/v4/topics/%s/feeds/timeline_activity" 41 #初始请求 url 附带的请求参数 42 URL_QUERY = "?include=data%5B%3F%28target.type%3Dtopic_sticky_module%29%5D.target.data%5B%3F%28target.type%3Danswer%29%5D.target.content%2Crelationship.is_authorized%2Cis_author%2Cvoting%2Cis_thanked%2Cis_nothelp%3Bdata%5B%3F%28target.type%3Dtopic_sticky_module%29%5D.target.data%5B%3F%28target.type%3Danswer%29%5D.target.is_normal%2Ccomment_count%2Cvoteup_count%2Ccontent%2Crelevant_info%2Cexcerpt.author.badge%5B%3F%28type%3Dbest_answerer%29%5D.topics%3Bdata%5B%3F%28target.type%3Dtopic_sticky_module%29%5D.target.data%5B%3F%28target.type%3Darticle%29%5D.target.content%2Cvoteup_count%2Ccomment_count%2Cvoting%2Cauthor.badge%5B%3F%28type%3Dbest_answerer%29%5D.topics%3Bdata%5B%3F%28target.type%3Dtopic_sticky_module%29%5D.target.data%5B%3F%28target.type%3Dpeople%29%5D.target.answer_count%2Carticles_count%2Cgender%2Cfollower_count%2Cis_followed%2Cis_following%2Cbadge%5B%3F%28type%3Dbest_answerer%29%5D.topics%3Bdata%5B%3F%28target.type%3Danswer%29%5D.target.content%2Crelationship.is_authorized%2Cis_author%2Cvoting%2Cis_thanked%2Cis_nothelp%3Bdata%5B%3F%28target.type%3Danswer%29%5D.target.author.badge%5B%3F%28type%3Dbest_answerer%29%5D.topics%3Bdata%5B%3F%28target.type%3Darticle%29%5D.target.content%2Cauthor.badge%5B%3F%28type%3Dbest_answerer%29%5D.topics%3Bdata%5B%3F%28target.type%3Dquestion%29%5D.target.comment_count&limit=" + str(LIMIT) 43 44 #指定 url,获取对应原始内容 / 图片 45 def fetch_image(url): 46 try: 47 headers = { 48 "User-Agent": USER_AGENT, 49 "Referer": REFERER, 50 "authorization": AUTHORIZATION 51 } 52 s = requests.get(url, headers=headers) 53 except Exception as e: 54 print("fetch last activities fail. " + url) 55 raise e 56 57 return s.content 58 59 #指定 url,获取对应 JSON 返回 / 话题列表 60 def fetch_activities(url): 61 try: 62 headers = { 63 "User-Agent": USER_AGENT, 64 "Referer": REFERER, 65 "authorization": AUTHORIZATION 66 } 67 s = requests.get(url, headers=headers) 68 except Exception as e: 69 print("fetch last activities fail. " + url) 70 raise e 71 72 return s.json() 73 74 #处理返回的话题列表 75 def process_activities(datums, face_detective): 76 for data in datums["data"]: 77 78 target = data["target"] 79 if "content" not in target or "question" not in target or "author" not in target: 80 continue 81 82 #解析列表中每一个元素的内容 83 html = etree.HTML(target["content"]) 84 85 seq = 0 86 87 #question_url = target["question"]["url"] 88 question_title = target["question"]["title"] 89 90 author_name = target["author"]["name"] 91 #author_id = target["author"]["url_token"] 92 93 print("current answer: " + question_title + " author: " + author_name) 94 95 #获取所有图片地址 96 images = html.xpath("//img/@src") 97 for image in images: 98 if not image.startswith("http"): 99 continue 100 s = fetch_image(image) 101 102 #请求人脸检测服务 103 scores = face_detective(s) 104 105 for score in scores: 106 filename = ("%d--" % score) + author_name + "--" + question_title + ("--%d" % seq) + ".jpg" 107 filename = re.sub(r'(?u)[^-\w.]', '_', filename) 108 #注意文件名的处理,不同平台的非法字符不一样,这里只做了简单处理,特别是 author_name / question_title 中的内容 109 seq = seq + 1 110 with open(os.path.join(DIR, filename), "wb") as fd: 111 fd.write(s) 112 113 #人脸检测 免费,但有 QPS 限制 114 time.sleep(2) 115 116 if not datums["paging"]["is_end"]: 117 #获取后续讨论列表的请求 url 118 return datums["paging"]["next"] 119 else: 120 return None 121 122 def get_valid_filename(s): 123 s = str(s).strip().replace(' ', '_') 124 return re.sub(r'(?u)[^-\w.]', '_', s) 125 126 import base64 127 def detect_face(image, token): 128 try: 129 URL = "https://aip.baidubce.com/rest/2.0/face/v3/detect" 130 params = { 131 "access_token": token 132 } 133 data = { 134 "face_field": "age,gender,beauty,qualities", 135 "image_type": "BASE64", 136 "image": base64.b64encode(image) 137 } 138 s = requests.post(URL, params=params, data=data) 139 return s.json()["result"] 140 except Exception as e: 141 print("detect face fail. " + url) 142 raise e 143 144 def fetch_auth_token(api_key, secret_key): 145 try: 146 URL = "https://aip.baidubce.com/oauth/2.0/token" 147 params = { 148 "grant_type": "client_credentials", 149 "client_id": api_key, 150 "client_secret": secret_key 151 } 152 s = requests.post(URL, params=params) 153 return s.json()["access_token"] 154 except Exception as e: 155 print("fetch baidu auth token fail. " + url) 156 raise e 157 158 def init_face_detective(app_id, api_key, secret_key): 159 # client = AipFace(app_id, api_key, secret_key) 160 # 百度云 V3 版本接口,需要先获取 access token 161 token = fetch_auth_token(api_key, secret_key) 162 def detective(image): 163 #r = client.detect(image, options) 164 # 直接使用 HTTP 请求 165 r = detect_face(image, token) 166 #如果没有检测到人脸 167 if r is None or r["face_num"] == 0: 168 return [] 169 170 scores = [] 171 for face in r["face_list"]: 172 #人脸置信度太低 173 if face["face_probability"] < 0.6: 174 continue 175 #颜值低于阈值 176 if face["beauty"] < BEAUTY_THRESHOLD: 177 continue 178 #性别非女性 179 if face["gender"]["type"] != "female": 180 continue 181 scores.append(face["beauty"]) 182 183 return scores 184 185 return detective 186 187 def init_env(): 188 if not os.path.exists(DIR): 189 os.makedirs(DIR) 190 191 init_env() 192 face_detective = init_face_detective(APP_ID, API_KEY, SECRET_KEY) 193 194 url = BASE_URL % SOURCE + URL_QUERY 195 while url is not None: 196 print("current url: " + url) 197 datums = fetch_activities(url) 198 url = process_activities(datums, face_detective) 199 #注意节操,爬虫休息间隔不要调小 200 time.sleep(5) 201 202 203 # vim: set ts=4 sw=4 sts=4 tw=100 et:
9 运行准备
- 安装 Python 3,Download Python
- 安装 requests、lxml、baidu-aip 库,都可以通过 pip 安装,一行命令
- 申请百度云检测服务,免费。人脸识别-百度AI
将 AppID ApiKek SecretKey 填写到 代码 中
- (可选)配置自定义信息,如图片存储目录、颜值阈值、人脸置信度等
- (可选)若请求知乎失败,返回如下。需填写
AUTHORIZATION,可从开发者工具中获取(如下图,换了几个浏览器,目前没登录情况该值都是一样的。知乎对爬虫的态度比较开放,不知道后续是否会更换)
1 { 2 "error": { 3 "message": "ZERR_NO_AUTH_TOKEN", 4 "code": 100, 5 "name": "AuthenticationInvalidRequest" 6 } 7 }
Chrome 浏览器;找一个知乎链接点进去,打开开发者工具,查看 HTTP 请求 header;无需登录
1 - 运行 ^*^
10 结语
因是人脸检测,所以可能有些福利会被筛掉。百度图像识别 API 还有一个叫做色情识别。这个 API 可以识别不可描述以及性感指数程度,可以用这个 API 来找福利
https://cloud.baidu.com/product/imagecensoring
- 如果实在不想申请百度云服务,可以直接把人脸检测部分注释掉,当做单纯的爬虫使用
- 人脸检测部分可以替换成其他厂商服务或者本地模型,这里用百度云是因为它不要钱
- 抓了几千张照片,效果还是挺不错的。有兴趣可以把代码贴下来跑跑试试
- 这边文章只是基础爬虫 + 数据过滤来获取较高质量数据的示例,希望有兴趣者可以 run
下,代码里有很多地方可以很容易的修改,从最简单的数据源话题变更、抓取数据字段增加和删除到图片过滤条件修改都很容易。如果再稍微花费时间,变更为抓取某人动态(比如*哥,数据质量很高)、探索
HTTP 请求中哪些 header 和 query
是必要的,文中代码都只需要非常局部性的修改。至于人脸探测,或者其他机器学习接口,可以提供非常多的功能用于数据过滤,但哪些过滤是具备高可靠性,可信赖的且具备可用性,这个大概是经验和反复试验,这就是额外的话题了;顺便希望大家有良好的编码习惯 - 最后再次声明,颜值得分以及性别过滤存在 bad case,请勿认真对待
在这里还是要推荐下我自己建的Python开发学习群:810735403
,群里都是学Python开发的,如果你正在学习Python ,欢迎你加入,大家都是软件开发党,不定期分享干货(只有Python软件开发相关的),包括我自己整理的一份2020最新的Python进阶资料和高级开发教程,欢迎进阶中和进想深入Python的小伙伴!