#include<iostream>
#include<stack>
template <class T> class node { public: T data; int height; node<T>* left; node<T>* right; node() { left = nullptr; right = nullptr; height = 1; } node(T x) { left = nullptr; right = nullptr; height = 1; data = x; } }; template <class T> class AVLtree { node<T> *root; int quantity; //------------------------------------------------- //这部分属于类的内部操作函数,并不需要暴露给使用者 //------------------------------------------------- int max(int a, int b) { return a > b ? a : b; } //返回高度,主要作用是定义空指针的高度为0 int height(node<T>*x) { if (x == nullptr)return 0; return x->height; } int update_h(node<T>*x) { return max(height(x->left), height(x->right)) + 1; } //ll型旋转 node<T>* ll_rotate(node<T>* x) { node<T>* y = x->left; x->left = y->right; y->right = x; x->height = update_h(x); y->height = update_h(y); return y; } //rr型旋转 node<T>* rr_rotate(node<T>* x) { node<T>* y = x->right; x->right = y->left; y->left = x; x->height = update_h(x); y->height = update_h(y); return y; } //lr型旋转 node<T>* lr_rotate(node<T>* x) { x->left = rr_rotate(x->left); return ll_rotate(x); } //rl型旋转 node<T>* rl_rotate(node<T>* x) { x->right = ll_rotate(x->right); return rr_rotate(x); } //获取两子树高度差 int getBalance(node<T>* x) { if (x == nullptr)return 0; return height(x->left) - height(x->right); } //向节点x插入元素 node<T>* insert(node<T>* p, T x) { if (p == nullptr) { quantity++; return p = new node<T>(x); } //要注意全部使用<号,这样T只要重载小于号就好 if (x < p->data) p->left=insert(p->left, x); else if (p->data < x) p->right=insert(p->right, x); else return p; p->height = update_h(p); int b = getBalance(p); if (1 < b && (x < p->left->data)) { return ll_rotate(p); } else if (b < -1 && (p->right->data < x)) { return rr_rotate(p); } else if (1 < b && (p->right->data < x)){ return lr_rotate(p); } else if (b < -1 && (x < p->left->data)){ return rl_rotate(p); } return p; } T* find(T x,node<T> *p) { if (x < p->data) return find(x,p->left ); else if (p->data < x) return find(x,p->right); else return &p->data; } node<T> *minValueNode(node<T>* p){ node<T>* current = p; while (current->left != nullptr) current = current->left; return current; } node<T> *erase(T x,node<T>* p) { if (p == nullptr)return nullptr; if (p->data < x) { p->right=erase(x, p->right); } else if (x < p->data) { p->left=erase(x, p->left); } else { if (p->left == nullptr||p->right == nullptr) { node<T>*tmp = p->left ? p->left : p->right; delete p; p = tmp; } else { node<T> tmp = minValueNode(p->right); p->data = tmp.data; p->right = erase(tmp.data, p->right); } } if (p == nullptr)return nullptr; p->height = update_h(p); int b = getBalance(p); if (1 < b && (-1<getBalance(p->left))) { return ll_rotate(p); } else if (b < -1 && (getBalance(p->right) < 1)) { return rr_rotate(p); } else if (1 < b && (getBalance(p->left) < 0)) { return lr_rotate(p); } else if (b < -1 && (0<getBalance(p->right) )) { return rl_rotate(p); } return p; } class iterator { node<T> *p; stack <node<T>*> inorder; public: iterator(node<T> * x){ p = x; while (p != nullptr) { inorder.push(p); p=p->left; } if (!inorder.empty()) { p = inorder.top(); inorder.pop(); } } bool operator==(const iterator x)const { return p == x.p; } bool operator!=(const iterator x)const { return p != x.p; } T& operator*()const { return p->data; } node<T> *operator->() const { return p; } iterator &operator++(){ if (inorder.empty()) { iterator tmp = iterator(nullptr); *this = tmp; return *this; } p=inorder.top(); inorder.pop(); if (p->right != nullptr) { node<T> *tmp=p->right; while (tmp != nullptr) { inorder.push(tmp); tmp = tmp->left; } } return *this; } iterator &operator++(int) { node<T>* x = p; ++*(this); return *this; } }; public: AVLtree() { root =nullptr; quantity = 0; } //插入元素 void insert(T x) {root=insert(root, x);} //删除元素 void erase(T x) { if (erase(x, root)) quantity--; } //寻找元素x,若无则返回空指针 T* find(T x) { return find( x, root); } //容器元素个数 int size() { return quantity; } //容器是否为空 bool empty() { return quantity == 0; } iterator begin() {return iterator(root);} iterator end() { return iterator(nullptr); } };