- Maximum Product Subarray
Given an integer array nums
, find the contiguous subarray within an array (containing at least one number) which has the largest product.
Example 1:
Input: [2,3,-2,4]
Output: 6
Explanation: [2,3] has the largest product 6.
Example 2:
Input: [-2,0,-1]
Output: 0
Explanation: The result cannot be 2, because [-2,-1] is not a subarray.
解法 动态规划。需要设置两个dp数组,分别保存到位置i的最大和最小连续乘积,这是因为最小的乘积可能是负的,如果再乘上一个负数会变成比较大数
\[\mathrm{dp\_max}[0] = \mathrm{dp\_min}[0] = \mathrm{nums}[0]\\
\mathrm{dp\_max[i]} = \max\{\mathrm{nums}[i], \mathrm{dp\_max}[i-1]*\mathrm{nums}[i], \mathrm{dp\_min}[i-1]*\mathrm{nums}[i]\}\\
\mathrm{dp\_min[i]} = \min\{\mathrm{nums}[i], \mathrm{dp\_max}[i-1]*\mathrm{nums}[i], \mathrm{dp\_min}[i-1]*\mathrm{nums}[i]\}
\]
\mathrm{dp\_max[i]} = \max\{\mathrm{nums}[i], \mathrm{dp\_max}[i-1]*\mathrm{nums}[i], \mathrm{dp\_min}[i-1]*\mathrm{nums}[i]\}\\
\mathrm{dp\_min[i]} = \min\{\mathrm{nums}[i], \mathrm{dp\_max}[i-1]*\mathrm{nums}[i], \mathrm{dp\_min}[i-1]*\mathrm{nums}[i]\}
\]
对于数组dp_max和dp_min,每次更新只用两个连续的数,因此可以将空间复杂度优化为\(O(1)\)
class Solution {
public:
int maxProduct(vector<int>& nums) {
int pre_f = nums[0], pre_g = nums[0];
int res = pre_f;
for(int i = 1; i < nums.size(); ++i){
int tmp1 = max(nums[i], max(pre_f*nums[i], pre_g*nums[i]));
int tmp2 = min(nums[i], min(pre_f*nums[i], pre_g*nums[i]));
res = max(res, tmp1);
pre_f = tmp1;
pre_g = tmp2;
}
return res;
}
};